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Middle-school students are expected to understand key components of graphs, such as slope and y-intercept. However,
constructing graphs is a skill that has received relatively little research attention. This study examined students’
construction of graphs of linear functions, focusing specifically on the relative difficulties of graphing slope and
y-intercept. Sixth-graders’ responses prior to formal instruction in graphing reveal their intuitions about slope and
y-intercept, and seventh- and eighth-graders’ performance indicates how instruction shapes understanding. Students’
performance in graphing slope and y-intercept from verbally presented linear functions was assessed both for graphs
with quantitative features and graphs with qualitative features. Students had more difficulty graphing y-intercept than
slope, particularly in graphs with qualitative features. Errors also differed between contexts. The findings suggest that
it would be valuable for additional instructional time to be devoted to y-intercept and to qualitative contexts.

Graphical representations of functions are integral to
algebra and important in students’ mathematics education.
Yet, many middle- and high-school students have a limited
understanding of graphs (Blume & Heckman, 2000; Swaf-
ford & Brown, 1989). Studies have shown that conveying
information with graphs and extracting information from
graphs are often difficult for students (e.g., Donnelly &
Welford, 1989; Eraslan, 2008; Padilla, McKenzie, & Shaw,
1986; Swatton & Taylor, 1994; Wainer, 1992) and that
these difficulties span many levels of education (Wainer,
1992; Wavering, 1989).

Many studies assessing students’ understanding of
graphing have focused on students’ abilities to interpret
graphs (e.g., Friel, Curcio, & Bright, 2001; McKenzie &
Padilla, 1986; Swatton & Taylor, 1994; Wainer, 1992) or to
translate among various representations including graphi-
cal representations (Brenner et al., 1997; Moschkovich,
Schoenfeld, & Arcavi, 1993). An understanding of graph-
ing, however, involves not only interpretation and transla-
tion but also construction. Although technological
advances such as graphing calculators and computer pro-
grams promote exploration and understanding of func-
tions (e.g., Ainley, Nardi, & Pratt, 2000; Botzer &
Yerushalmy, 2008; Hennessy, Fung, & Scanlon, 2001;
Kieran, 2001; Levert, 2003; Nicolaou, Nicolaidou, &
Zacharia, 2007; Noble, Nemirovsky, Dimattia, & Wright,
2004; Schwartz & Hershkowitz, 1999), they do not always

help students gain a full understanding of function (Schoe-
nfeld, Smith, & Arcavi, 1993).

Students’ ability to construct graphs by hand (e.g., to
create a graph from a table of values) has received rela-
tively little research attention (Leinhardt, Zaslavsky, &
Stein, 1990) with just a handful of studies focusing solely
on graph construction (Krabbendam, 1982; Kramarski &
Mevarech, 1997; Mevarech & Kramarski, 1997; Wavering,
1985). This research indicates that students may find graph
construction difficult because they hold misconceptions
about graphs, such as confusing height and slope, reading
and constructing graphs point-wise (each point individu-
ally), and considering the graph as an icon (a literal picture
of that situation) (see Leinhardt et al., 1990 for a review).
These deficiencies may arise with a lack of knowledge of
concepts, negative transfer from one representation to
another, or confusion between the process of graphing and
the graph as a product.

Graph construction also receives relatively little instruc-
tional attention in math curricula (Demana, Schoen, &
Waits, 1993). The present study focuses on students’ abili-
ties to construct graphs.

According to the National Council of Teachers of Math-
ematics (2000), by the end of middle school, students are
expected to understand key components of graphs, such as
slope and y-intercept. Although some research has sought
to reveal what students understand about these concepts
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(e.g., Lobato, Ellis, & Muñoz, 2003; Moschkovich, 1998;
Turner, Wilhelm, & Confrey, 2000), there exists very little
data that compares students’ understanding of slope and
y-intercept, and how that understanding changes across
grade levels.

From one perspective, understanding slope seems to
make higher demands on students’ cognitive capacity than
y-intercept. Understanding and graphing slope requires
that a student be able to track two variables and the nature
of their covarying relationship. Understanding and graph-
ing y-intercept, on the other hand, involves attending to the
value of one variable when the other variable is zero,
essentially one variable at a single point. Furthermore,
research has shown that students tend to read graphs by
focusing on the individual points marked (Kerslake, 1981;
Moschkovich et al., 1993; Yerushalmy & Schwartz, 1993).
To determine slope, a student must work with a minimum
of two points, whereas to determine y-intercept, only one
point is required. For these reasons, slope may be harder to
grasp and therefore more difficult to graph accurately than
y-intercept.

Another perspective suggests, however, that slope may
be easier to grasp than y-intercept. Students may have an
intuitive understanding of slope from their real-world
experiences with covariation, such as in cooking (for every
egg, 1 cup of flour) or shopping (for every additional
apple, it costs 50¢ more), and they may connect this prior
experience with their classroom lessons in slope (e.g.,
Schlieman, Carraher, & Ceci, 1997). Students may have
less experience with y-intercept outside of the classroom
and therefore have fewer intuitions about the concept.
Students may also have difficulty connecting real-world
and classroom experiences with the concept of y-intercept
(Davis, 2007). In some situations, it may be hard for stu-
dents to find an “initial value.” For example, students in
one study found it difficult to plot a y-intercept when
graphing the linear relationship between the number of
scoops of ice cream in an ice cream cone and the amount
of money it costs (Davis, 2007). Students were reluctant to
plot a point where the ice cream cone would be purchased
without ice cream (the y-intercept), believing that no one
would ever purchase the cone alone in the real world.

Thus, informal learning through everyday life suggests
that students may have stronger intuitions about slope and
find it easier than y-intercept to represent in a graph. The
present study will investigate students’ performance
graphing both of these concepts (slope and y-intercept).

Not only is it theoretically important to know which of
these concepts is more difficult for students, but it is also
important for practical reasons. Knowing how difficult it is

for students to represent slope and y-intercept in a graph
can bring to attention the need to understand why these
concepts may be difficult for students to learn. With this
knowledge, instruction can be adapted to best serve stu-
dents’ needs.

Regardless of whether slope or y-intercept is more dif-
ficult, by the end of eighth grade, students are expected to
be able to interpret and construct graphs of linear func-
tions. Instruction in linear functions now often begins in
seventh grade (e.g., in Connected Mathematics Program
[CMP] [Lappan, Fey, Fitzgerald, Friel, & Philips, 1998],
the curriculum used in the school participating in this
study). Prior to formal instruction in linear functions, stu-
dents typically have experience with tables, bar graphs,
and frequency plots to organize and represent data. With
this prior experience and real-world experience, students
in sixth grade may have intuitions about graphing slope
(e.g., increase in cost with each additional apple, steepness
of a hill) and y-intercept (e.g., height of a student at the
beginning of the school year). The present study focuses
on sixth-, seventh-, and eighth-grade students, which
allows us to examine students’ performance graphing
linear functions both before and after formal instruction.
Sixth-grade students’ performance may reveal insights
into their intuitions about graphing y-intercept and slope,
while seventh- and eighth-grade students’ performance
may indicate how instruction has shaped their ability.

Another goal of this research is to explore students’
understanding of slope and y-intercept in graphs with two
different types of features: quantitative and qualitative.
Graphs with quantitative features (see Figure 1 for an
example) have specific values or increments marked for
each variable (e.g., week # 1, 2, 3, etc.). Graphs with
qualitative features (see Figure 2 for an example), though
they may have axes labeled (e.g., weeks, money earned,
etc.), do not display any specific values for any variable. In
a qualitative graph, no numbers or values are attached to
any variable, so there is no numerical information to use
when constructing or interpreting the graph. Instead, stu-
dents must look at the general trend of the graph and
observe the pattern of covariation between two variables
(Leinhardt et al., 1990). Just as research has focused little
on students’ abilities to construct graphs, qualitative inter-
pretations of graphs are also underrepresented in math
curricula and often experienced only in science units
(Leinhardt et al., 1990).

When students examine graphs, they tend to concentrate
on one point or several points rather than the more global
structure of the graph (Bell & Janvier, 1981; Wainer,
1992). Consequently, students may interpret graphs as
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they would on tables, focusing on specific pieces of infor-
mation with little attention to the “bigger picture” of the
underlying situation (Dugdale, 1993; Leinhardt et al.,
1990). Oftentimes, when students are presented with
graphs, they are asked to plot, read, or consider specific
points on the graph. This “pointwise” approach is distinct
from a more global approach in which students might be
asked to attend to the general shape of the graph (e.g.,
noticing that the function creates a line). As students are
typically presented with graphs with quantitative features
and encouraged to calculate specific quantities for slope or
y-intercept, they may be missing opportunities to recruit a
global approach to making sense of graphs.

Graphs presented with only qualitative features (i.e.,
no numerical values) might help students draw upon
their common sense and reality-checking strategies
(Goldenberg, 1987; Krabbendam, 1982). Students’ intui-
tions about physical phenomena, however, may incor-
rectly influence their reading of qualitative graphs,
promoting “iconic” interpretations (Nemirovsky &
Rubin, 1991; Noble & Nemirovsky, 1995; Stylianou,
Smith, & Kaput, 2005). For example, when discussing
the steepest point of a graph, students may liken the
curve to their knowledge of hills and select the top of the
hill as the steepest point instead of determining where
the curve has the greatest slope. As little empirical
research exists comparing students’ performance con-

structing quantitative and qualitative graphs, one aim of
this research was to examine whether quantitative and
qualitative features influence students’ ability to con-
struct graphs.

In brief, this study addresses two main questions: (1)
How successful are students at graphing slope and
y-intercept, and how does this performance change with
grade level? and (2) Do qualitative or quantitative features
of a graph influence students’ ability to graph slope and
y-intercept?

Method
Participants were 180 middle-school students (59 sixth

graders, 65 seventh graders, and 56 eighth graders) from a
small urban district in the Midwest. The school’s student
population was 38% minority and 41% low income.

Connected Mathematics was the curriculum used for
instruction in all three grades. Students completed the
assessment in the spring (mid-March), by which time
sixth-grade students had received instruction (through
CMP’s Data About Us) on how to represent data using line
plots, bar graphs, stem-and-leaf plots, and coordinate
graphs. Students in seventh grade had spent classroom

Jamie is saving money. She has saved $7 so far and plans to save $3 each week. Draw a graph 
that shows the amount of money Jamie will have after each week.
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Figure 1. Quantitative item.

The school band is selling candy bars to raise money for their trip to the Dells. The following 
graph shows the relationship between the number of candy bars sold and the amount of money 
the band has earned.

a) If the band earned twice as much money for each candy bar, the graph would look different. 
Show what this would look like on the graph above and label is “A”.

b) If the band received a $50 gift from a parent when they began selling candy bars, the graph 
would also look different. Show what this would look like on the graph above and label it 
“B”.

Dollars
Earned

Candy  Bars Sold

Figure 2. Qualitative item.
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time interpreting and constructing tables and graphs (by
hand and with graphing calculators) to describe linear
relations between variables (Variables and Patterns).
These students had also received instruction on the rela-
tion between tabular and graphical linear patterns through
discussion of slope, and y-intercept (Moving Straight
Ahead). By the spring of eighth grade, students had
received lessons on how to recognize and describe linear
and nonlinear patterns in tables, graphs, and symbolic
equations (through five of CMP’s instructional books
designed for eighth grade).

The data that are the focus of this paper consist of
students’ responses to a subset of items on a written
assessment that targeted their knowledge of functions and
their fluency with different mathematical representations.
This study addresses students’ responses to the two graph
construction items. Both of the items assessed students’
ability to construct a graphical representation of a function
that was described verbally (refer to Figure 1 for the quan-
titative item and Figure 2 for the qualitative item).

Students’ graphical constructions for each item were
scored in terms of their display of slope and y-intercept
(referred to as “graphing slope and y-intercept” in this
paper). For slope, on the quantitative item for which a grid
was provided, students’ graphs were expected to display
the correct relationship between x and y (i.e., with each
increasing week, an increase of $3). Straight lines, linear
points, or bars were all accepted as correct (as the story
could be interpreted as a continuous or discrete situation)
if they depicted the correct relationship. For part A of the
qualitative item (based on a problem in CMP’s Moving
Straight Ahead, p. 44), any smooth linear graph drawn
above the original line was categorized as a correct
response. Incorrect responses for both items included all
other linear graphs depicting any other slope and all non-
linear graphs.

With respect to y-intercept, for the quantitative item in
which increments were marked, students’ graphs were
expected to account for the $7 received before the first
week. Correct responses included graphs that marked the
y-intercept (0,7) or began the line at a correct point (e.g.,
1,10) from which the correct y-intercept could be inferred.
For part B of the qualitative item, any linear graph starting
from above the origin on the y-axis was coded as depicting
correct y-intercept understanding. Incorrect responses
included graphs that started at any other specific
y-intercept (including incorrect y-intercepts as a result of
changing the x-intercept) or at the origin (0,0).

Reliability of coding was assessed by having a second
coder rescore 20% of the data. Agreement for scoring

students’ responses for slope accuracy was 100% for the
quantitative item and 90% for the qualitative item. Agree-
ment for scoring y-intercept accuracy was 100% for the
quantitative item and 97% for the qualitative item. Dis-
crepancies between coders were resolved through consen-
sus meetings, and the resulting consensus codes were used
for data analysis.

The design of this study therefore includes three vari-
ables: one between-subject factor (grade: sixth, seventh, or
eighth) and two within-subject factors (graph type: quali-
tative or quantitative; concept: slope or intercept). Our aim
was to understand how these three variables might affect
students’ performance in graphing linear equations.

Results
We analyzed the data by modeling the repeated mea-

sures logistic data with weighted least squares regression
(Stokes, Davis, & Koch, 2000). We calculated a score for
each student for each of our repeated trials (slope in a
quantitative graph, slope in a qualitative graph, intercept in
a quantitative graph, and intercept in a qualitative graph).
Students received a 1 for accurate responses and a 0 for
inaccurate responses.
How Successful Are Students at Graphing Slope and
Intercept, and How Does This Performance Change
With Grade Level?

As seen in Figure 3, there was a significant interaction
between grade level and concept, QW = 24.71, df = 2,
p < .0001. Students were less successful at graphing
y-intercept compared with slope, particularly in sixth and
seventh grades. The difference between performance on
slope and y-intercept decreased by eighth grade. As seen
in the figure, sixth-grade students appear to have good
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Figure 3. Mean scores for graphing slope (solid line) and y-intercept (dotted
line) across two items as a function of grade.
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intuitions about slope, but not about y-intercept, despite
having had little or no formal instruction about graphs of
linear functions. An impressive 70% of the sixth graders
were able to correctly represent slope graphically. For
y-intercept, however, students’ responses revealed uncer-
tainty about how to represent it graphically. By eighth
grade, performance in graphing both slope and
y-intercept improved, although the graphical representa-
tion of y-intercept still lagged behind that of slope. Even
though both concepts are covered in seventh- or eighth-
grade CMP units (e.g., Moving Straight Ahead, Thinking
with Mathematical Models, Say It with Symbols), by
mid-March (when this assessment was given), nearly a
quarter of eighth-grade students were unable to correctly
graph slope, and a third were unable to correctly graph
y-intercept.

The main effect of concept was significant, with stu-
dents more successful at graphing slope than y-intercept,
QW = 119.27, df = 1, p < .0001. Not surprisingly, students’
performance also increased across grade levels,
QW = 35.27, df = 2, p < .0001(also reliable when excluding
students who did not respond), regardless of the concept
they were graphing.
Do Qualitative or Quantitative Features of a Graph
Influence Students’ Ability to Graph Slope and
Y-Intercept?

Next, we compared students’ responses in graphing
slope and y-intercept between the quantitative and quali-
tative items (see Table 1 for means and standard deviations
by grade, concept, and graph type). The interaction
between graph type and concept was significant,
QW = 9.41, df = 1, p = .002. When graphing slope, the type
of graph did not affect performance (see Figure 4). When
graphing y-intercept, however, as seen in Figure 5, sixth-
grade students had more difficulty when the graph was
presented with qualitative features than with quantitative
features. We consider possible explanations for this
finding in the discussion.

In order to understand better how student performance
in graphing slope and y-intercept differs between quanti-
tative and qualitative graphs, we next examined students’
errors.

What Types of Errors Did Students Make?
Slope errors. Closer examination of students’

responses in graphing slope and y-intercept revealed that
the two types of graphs (quantitative or qualitative)
afforded different types of errors (see Table 2 for a
description of errors and Table 3 for percent of students
making errors of each type by grade). With the quantitative
graph, about 10% of students (in the sample as a whole)
failed to respond. When students did respond, their errors
in graphing slope most often involved arithmetic errors at
some point in the calculation process. Because students
often correctly calculated several points before making an
arithmetic error, they sometimes produced nonlinear
graphs (see Figure 6a).

In the graph with qualitative features, no-response
errors were particularly common (18.3% of students
overall). When students did respond, their errors in graph-
ing slope most often involved constructing a line with an

Table 1
Proportion of Correct Responses by Grade, Concept, and Graph Type

Concept Graph Type Sixth Seventh Eighth

Slope Quantitative 0.71 0.67 0.82
Qualitative 0.69 0.80 0.85

Intercept Quantitative 0.42 0.42 0.71
Qualitative 0.12 0.36 0.75
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Figure 4. Percent of students who correctly graphed slope across the two
types of graphs (quantitative and qualitative).
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Figure 5. Percent of students who correctly graphed y-intercept across the
two types of graphs (quantitative and qualitative).
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incorrect slope magnitude—either decreasing the slope
from the original line (see Figure 6b) or not changing the
slope at all.

Y-intercept errors. Errors in graphing y-intercept also
differed between the qualitative and quantitative graphs.
When asked to construct a graph with quantitative fea-
tures, as noted earlier, about 10% of students (in the
sample as a whole) failed to respond. When students did
respond, one common error involved is students construct-
ing a graph with a y-intercept falling somewhere along the
y-axis but at the incorrect value of y. Another common
error that we identified in this dataset involved plotting the
initial amount of money (the $7 Jamie has to start with)
not on the y-axis but one increment over, corresponding
with the first week (see Figure 7a). This resulted in a

corresponding time error. Students were disinclined to plot
the initial $7 as a value along the y-axis. A few students
drew an additional line segment connecting the point (1,7)
to the origin, although this created a nonlinear curve.

For the qualitative item, no-response errors were
common (24.4% of students overall), and confusion with
the origin led to another frequent type of y-intercept error.
Consistent with the literature (Leinhardt et al., 1990), stu-
dents often drew a line from the same point as the line
provided on the graph (the origin) but changed the slope of
the line (see Figure 7b). Again, this error reveals a ten-
dency for students to begin a line at the origin. Students
may begin the line at the origin for a number of reasons:
out of a “default” tendency because they do not understand
how to represent a change in y-intercept on the graph or

Table 2
Description of Errors by Concept and Graph Context

Concept Context Error Type Description

Slope Quantitative Arithmetic error Error in calculating one point from another that led to a
nonlinear graph, e.g., with a slope of 2, points include
(2,2), (3,4), and (4,7)

Slope magnitude error Produced a line with an incorrect slope
Qualitative Under Slope decreased from original line

Same Slope not changed from original line
Y-intercept Quantitative Time error Plotted the initial amount of money at week 1

Y-intercept magnitude error Produced graphs where an incorrect y-intercept was drawn
or could be inferred

Qualitative Origin Graphed a line passing through the origin
Horizontal Axis Produced a line with a y-intercept to the right of the

original line

Table 3
Percent of Students Making Errors of Each Type for Quantitative and Qualitative Graphs by Grade

Concept Context Error Type Sixth Seventh Eighth Overall
N = 59 N = 65 N = 56 N = 180

Slope Quantitative Arithmetic error 3.4% 10.8% 8.9% 7.8%
Slope magnitude error 1.7% 9.2% 1.8% 4.4%
No response 16.9% 9.2% 5.4% 10.6%
Other 6.8% 3.1% 1.8% 3.9%
Total 28.8% 32.3% 17.9% 26.7%

Qualitative Under 0% 3.1% 0% 1.1%
Same 1.7% 1.5% 3.6% 2.2%
No response 28.8% 15.4% 10.7% 18.3%
Total 30.5% 20.0% 14.3% 21.7%

Y-intercept Quantitative Time error 8.5% 23.1% 10.7% 14.4%
Y-intercept magnitude error 25.4% 23.1% 10.7% 20%
No response 16.9% 9.2% 5.4% 10.6%
Other 6.8% 3.1% 1.8% 3.9%
Total 57.6% 58.5% 28.6% 48.9%

Qualitative Origin 47.5% 38.5% 14.3% 33.9%
Horizontal axis 0% 4.6% 0% 1.7%
No response 40.7% 21.5% 10.7% 24.4%
Total 88.1% 64.6% 25.0% 60.0%
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because they do not understand the difference between
variables being linearly related and proportionally related.
Regardless of the reason, however, students did recognize
that with an additional $50, the line should look different.
Students then changed the graph in a way with which they
were familiar (slope), and hence, the resulting error
involved both y-intercept and slope confusion. More

broadly, students tend to use the origin as the y-intercept,
regardless of the situation being represented.

Discussion
Understanding of Slope and Y-Intercept

This study focused on one aspect of students’ ability—
graph construction. We recognize that understanding of

Figure 6. Examples of student’s work revealing slope errors with quantitative
and qualitative graphs. (a) Quantitative graph: arithmetic error (top); (b)
Qualitative graph: decreasing slope error (bottom).

Figure 7. Examples of student work revealing y-intercept errors with quan-
titative and qualitative graphs. (a) Quantitative graph: plotting one time incre-
ment over (top); (b) Qualitative graph: plotting from origin and changing
slope (bottom).
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slope and y-intercept would best be assessed in multiple
ways; however, we believe that performance on a task such
as graph construction can provide some insight into stu-
dents’ understanding of slope and y-intercept. The graph
construction tasks included in this study require some
understanding of slope and y-intercept, and so successful
performance on these tasks reflects some (potentially
incomplete) understanding of these concepts. We discuss
the results of this study from this perspective.

Overall, students had more difficulty graphing
y-intercept than slope. In sixth grade, before students
receive formal instruction in graphing linear functions,
students’ responses reflected accurate intuitions about
slope more frequently than y-intercept. Although perfor-
mance in slope and y-intercept both improved across
grades, even in eighth-grade students’ graphing of
y-intercept lagged behind slope.

Students’ ability to construct graphs with correct slope
may be the result of their successfully transferring prior
knowledge of slope in tables to understanding slope in
graphs. Students may also relate their real-world
experiences with covariation, or with hills or mountains to
their understanding of graphing slope. Given recent
research on students’ understanding of covariation
(Blanton & Kaput, 2004), as well as efforts to integrate
algebraic ideas into elementary school mathematics cur-
ricula (Kaput, 1998; Olive, Izsak, & Blanton, 2002), it is
perhaps unsurprising that students have a fairly good
ability to graph slope even before the topic is addressed in
formal instruction.

The results indicate, however, that middle-school stu-
dents have a poor understanding of graphing y-intercept.
Students entering sixth grade may have little understand-
ing of y-intercept as a concept or may find it difficult to
transfer their knowledge of y-intercept from other repre-
sentations (e.g., tables) to graphs.

It is also possible that students are unable to relate
y-intercept on a graph to their real-world understanding of
y-intercept (Davis, 2007), such as the height of a student at
the beginning of the year. Intercept errors may also reflect
students’ real-world knowledge and experience of inde-
pendent variables such as time, where the initial value is
almost always zero. Students’ early experiences with
graphs (e.g., distance vs. time) include many functions
where both the x- and y-intercepts are equal to zero (Kal-
chman & Koedinger, 2005), which may also contribute to
this error.

Another possibility is that weakness in graphing
y-intercept may stem from an unequal balance in instruc-
tional attention between the concepts of slope and

y-intercept. Often when graphing is introduced in the cur-
riculum, although both slope and y-intercept are covered,
much more instructional time is spent on the concept of
slope (e.g., CMP, Grade 7, Variables and Patterns). In the
CMP curriculum, at least, the concept of y-intercept
receives less instructional time in the classroom. This is
then reflected in students’ stronger abilities to graph slope
than y-intercept.
Constructing Qualitative vs. Quantitative Graphs

Students, particularly sixth-grade students, had more
difficulties with y-intercept when constructing qualitative
graphs. Overall, sixth-grade students displayed poor per-
formance in graphing y-intercept, but they were somewhat
successful with the more familiar quantitative graph. With
the help of quantitative features of the graph, students
were able to focus on local aspects of the graph and pick
out specific points and values. Past research suggests that
there may be an advantage for processing information
within a local region for children at this age (Moses et al.,
2002), although with repeated exposure to such quantita-
tive graphs that allow a local focus of attention, concepts
like slope and y-intercept often remain limited to specific
values.

The differences in the types of slope errors produced
between quantitative and qualitative graphs may reflect
the focus of attention required for each type of graph. In
a graph with quantitative features, when using an addi-
tive strategy in calculating slope, for example, a student
might count $3 (vertically) for every 1 week (horizon-
tally). With a great deal of focus on calculating the spe-
cific points and increments, the student may never come
to view the graph as a whole. Instead, the student may
view graphing as a process of calculating point values
such that for every value of x, there is a corresponding y
value (Moschkovich et al., 1993). This perspective may
account for the nonlinear curves students sometimes pro-
duced for the quantitative graphs as a result of arithmetic
errors. Focused on the process of calculating a collection
of points to make a line, students may neglect to see the
graph as a whole. In fact, past research has noted that
many students do not ever view a function or graph as a
whole entity or object (Yerushalmy & Schwartz, 1993).
In some cases, the focus of learning does not go beyond
producing graphs through some process or action. Stu-
dents’ focus on the graph as a collection of local points
(and not a line as a whole) may be due in part to indi-
vidual differences in metacognitive skills such as cogni-
tive control (i.e., processes responsible for planning,
initiating appropriate actions, and inhibiting inappropri-
ate actions). Students with weaker metacognitive skills
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may rarely take the extra time, after plotting individual
points, to check their graphs by viewing the line as a
whole, and therefore, they may not recognize that they
have produced a nonlinear graph.

If, on the other hand, students are not provided with
quantitative features such as increments marked on the
graph, the focus of attention is shifted away from indi-
vidual points, and students are more likely to view the
graph globally or as a whole. Indeed, nonlinear curves
were seldom seen in students’ responses to the qualitative
item in this study. Students constructing graphs with quali-
tative features did make slope errors, but these errors
typically maintained an intact line with an altered slope.
With a qualitative graph, students’ errors revealed that
they viewed the graph or line as a whole entity, one that
could be “picked up and moved.”

Because of the focus of instruction on local aspects of
graphing rather than a more global view (Bell & Janvier,
1981; Demana et al., 1993), a process perspective on
graphing is often sufficient for success in the classroom.
Research on graphing, however, makes it clear that both
object and process perspectives on graphing are essential
in learning about functions and graphs (Swafford &
Brown, 1989). Moschkovich et al. (1993) argued that
“developing competency with linear relations means
learning which perspectives and representations can be
profitably employed in which context, and being able to
select and move fluently among them to achieve one’s
desired ends” (p. 72).
Effects of Grade Level on Graph Construction

When graphing y-intercept with quantitative and quali-
tative graphs, student performance improved considerably
from seventh to eighth grade. For an explanation of this
jump in performance, we can look to the students’ curricu-
lum. In CMP, students in seventh grade learn about slope
and intercept, and the relationship between tables and
graphs through two books in their curriculum set. In eighth
grade, they learn to recognize not only linear but also
nonlinear functions in graphs, and they learn about
the relationships among tables, graphs, and equations.
Eighth-grade students learn these concepts through five
books in their curriculum set. Students in eighth grade
receive more instruction on functions and graphing than
students in seventh grade, and this is reflected in the stu-
dents’ performance on both quantitative and qualitative
graph construction.

There is also an increase in performance between sixth
and seventh grade in graphing intercept on the qualitative
graph (see Figure 5). Students in sixth grade receive very
little instruction on coordinate graphs and even less

instruction on graphs with qualitative features. With little
knowledge, they are hesitant to construct graphs, as illus-
trated by the large proportion of students in sixth grade (24
out of 59 or 41%) who did not respond when asked to
graph the y-intercept on a qualitative graph. By seventh
grade, however, students have more experience with
graphing linear functions, and they are more likely to
attempt a response (only 22% of seventh graders did not
respond) when asked to construct a graph with qualitative
features. The increase in students responding to these
items from sixth to seventh grade mirrors the increase in
performance in correctly graphing y-intercept on the
qualitative graph.

Practice graphing linear functions with quantitative as
well as qualitative graphs could provide students opportu-
nities to exercise both process and object perspectives, and
to switch from one perspective to another between and
even within graphs. With this flexibility, students would be
less likely to make errors such as producing nonlinear
graphs for a linear function.
Implications for Instruction and Directions for
Future Research

These data indicate that students have difficulty in
graphing y-intercept, and they are less successful in cor-
rectly graphing slope and intercept in qualitative graphs.
These findings suggest that it would be valuable for addi-
tional instructional time to be devoted to y-intercept and to
qualitative contexts. A greater emphasis on qualitative
graphs might also be valuable in encouraging a more
global approach to graph construction and interpretation.

Future research should address several remaining ques-
tions. It would be interesting to conduct interviews with
students solving these problems to find out why students
find it difficult to graph y-intercept. Questions such as
“How much money does the band have at week 0?” and
“Where is the $50 gift from the parents accounted for in
your graph?” could help to determine where students
struggle in their understanding and representations of
y-intercept in graphs.

In addition, it would be interesting to examine how ninth
and tenth graders fare in solving these problems. High-
school students may have a better understanding of the
concepts of slope and y-intercept in graphs, though it is
possible that performance could remain stable on these
tasks after eighth grade. Although these concepts should
be understood by the end of eighth grade, it would be
interesting to know whether students in high school still
struggle with them.

Finally, an analysis of textbooks could reveal to what
extent graphing slope and intercept are discussed in math
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and science classrooms. This study focused on one cur-
riculum (CMP), but it would be interesting to see to what
extent other types of curricula devote time specifically to
slope and y-intercept.

With regard to teaching of graph construction, we also
have a specific suggestion. In order to emphasize the
concept of y-intercept, linear functions could be taught
using the equation y = b + mx instead of the traditional
y = mx + b. With the y-intercept represented in the begin-
ning of the right side of the equation, students might attend
to this concept first, and they may give more consideration
to understanding what this term means in constructing
graphs.

Conclusion
In summary, the present study showed that middle-

school students have more difficulty graphing y-intercept
than slope. Although sixth-grade students’ graph construc-
tions revealed accurate intuitions about slope, students’
performance in graphing y-intercept lagged behind
graphing slope even in eighth grade. Errors in students’
responses further revealed that students had more diffi-
culty graphing y-intercept when the graph displayed quali-
tative features as opposed to quantitative features. Taken
together, these results indicate that although both slope
and y-intercept are fundamental concepts, students are not
as successful at graphing y-intercept as they are at graph-
ing slope. Instruction should provide students with oppor-
tunities to develop a better understanding of y-intercept
and should also provide students opportunities to construct
graphs with quantitative as well as qualitative features.

References
Ainley, J., Nardi, E., & Pratt, D. (2000). The construction of meanings for

trend in active graphing. International journal of computers for mathemati-
cal learning, 5(2), 85–114.

Bell, A., & Janvier, C. (1981). The interpretation of graphs representing
situations. For the Learning of Mathematics, 2, 34–42.

Blanton, M., & Kaput, J. (2004). Elementary grade students’ capacity for
functional thinking. In M. Jonsen Hoines & A. Fuglestad (Eds.), Proceed-
ings of the 28th Conference of the International Group for the Psychology
of Mathematics Education (Vol. 2, pp. 135–142). Bergen, Norway:
Lawrence Erlbaum.

Blume, G. W., & Heckman, D. S. (2000). Algebra and functions. In E. A.
Silver & P. A. Kenny (Eds.), Results from the Seventh Mathematics Assess-
ment of the National Assessment of Educational Progress (pp. 269–300).
Reston, VA: NCTM.

Botzer, G., & Yerushalmy, M. (2008). Embodied semiotic activities and their
role in the construction of mathematical meaning of motion graphs. Inter-
national Journal of Computers for Mathematical Learning, 13(2), 111–
132.

Brenner, M. E., Mayer, R. E., Moseley, B., Brar, T., Duran, R., Reed, B. S., &
Webb, D. (1997). Learning by understanding: The role of multiple repre-
sentations in learning algebra. American Educational Research Journal,
34(4), 663–689.

Davis, J. D. (2007). Real-world contexts, multiple representations, student-
invented terminology, and y-intercept. Mathematical Thinking and Learn-
ing: An International Journal, 9(4), 387–418.

Demana, F. D., Schoen, H. L., & Waits, B. K. (1993). Graphing in the K-12
curriculum: The impact of the graphing calculator. In T. A. Romberg, E.
Fennema & T. P. Carpenter (Eds.), Integrating research on the graphical
representation of functions (pp. 11–39). Mahwah, NJ: Lawrence
Erlbaum.

Donnelly, J. F., & Welford, A. G. (1989). Assessing pupils’ ability to gener-
alize. International Journal of Science Education, 11(2), 161–171.

Dugdale, S. (1993). Functions and graphs: Perspectives on student thinking.
In T. A. Romberg, E. Fennema & T. P. Carpenter (Eds.), Integrating
research on the graphical representation of functions (pp. 101–130).
Mahwah, NJ: Lawrence Erlbaum.

Eraslan, A. (2008). The notion of reducing abstraction in quadratic functions.
International Journal of Mathematical Education in Science and Technol-
ogy, 39, 1051–1060.

Friel, S. N., Curcio, F. R., & Bright, G. W. (2001). Making sense of graphs:
Critical factors influencing comprehension and instructional implications.
Journal for Research in Mathematics Education, 32(2), 124–158.

Goldenberg, E. P. (1987). Believing is seeing: How preconceptions
influence the perception of graphs. In J. C.Bergeron, N. Herscovics &
C. Kieran (Eds.), Proceedings of the 11th International Conference
for the Psychology of Mathematics Education (pp. 197–203). Montreal,
Canada.

Hennessy, S., Fung, P., & Scanlon, E. (2001). The role of the graphic calcu-
lator in mediating graphing activity. International Journal of Mathemati-
cal Education in Science and Technology, 32(2), 267–290.

Kalchman, M., & Koedinger, K. R. (2005). Teaching and learning functions.
In M. S. Donovan & J. D. Bransford (Eds.), Mathematics in the classroom
(pp. 351–393). Washington, DC: The National Academic Press.

Kaput, J. J. (1998). Transforming algebra from an engine of inequity to an
engine of mathematical power by “algebrafying” the K-12 curriculum. In
S. Fennel (Ed.), The nature and role of algebra in the K-14 curriculum:
Proceedings of a National Symposium (pp. 25–26). Washington, DC:
National Academy Press.

Kerslake, D. (1981). Graphs. In K. M. Hard (Ed.), Children’s understanding
of mathematics (pp. 102–119). London: John Murray.

Kieran, C. (2001). Looking at the role of technology in facilitating transition
from arithmetic to algebraic thinking through the lens of a model of
algebraic activity. In Helen Chick, Proceedings of the 12th Study Confer-
ence of the International Commission on Mathematical Instruction (pp.
713–720). Melbourne, Australia: The University of Melbourne.

Krabbendam, H. (1982). The non-qualitative way of describing relations and
the role of graphs: Some experiments. In G. Van Barnveld & H. Krabben-
dam (Eds.), Conference on functions (pp. 125–146). Enschede, The Neth-
erlands: Foundation for Curriculum Development.

Kramarski, B., & Mevarech, Z. R. (1997). Cognitive-metacognitive training
within a problem-solving based logo environment. British Journal of Edu-
cational Psychology, 67(4), 425–445.

Lappan, G., Fey, J., Fitzgerald, W., Friel, S., & Philips, E. (1998). Connected
Mathematics Project. Menlo Park, CA: Dale Seymour.

Leinhardt, G., Zaslavsky, O., & Stein, M. K. (1990). Functions, graphs, and
graphing: Tasks, learning, and teaching. Review of Educational Research,
60, 1–64.

Levert, B. (2003). We’re poppin’ for math. Learning & Leading with Tech-
nology, 31(4), 20–23.

Lobato, J., Ellis, A. B., & Muñoz, R. (2003). How “focusing phenomena” in
the instructional environment support individual students’ generalizations.
Mathematical Thinking and Learning, 5, 1–36.

McKenzie, D. L., & Padilla, M. J. (1986). The construction and validation of
the test of graphing in science (TOGS). Journal of Research in Science
Teaching, 23, 571–579.

Constructing Graphs

School Science and Mathematics 239



Mevarech, Z. R., & Kramarski, B. (1997). From verbal descriptions to graphic
representations: Stability and change in students’ alternative conceptions.
Educational Studies in Mathematics, 32, 229–263.

Moschkovich, J. N. (1998). Students’ use of the x-intercept as an instance of
a transitional conception. Educational Studies in Mathematics, 37, 169–
197.

Moschkovich, J. N., Schoenfeld, A. H., & Arcavi, A. (1993). Aspects of
understanding: On multiple perspectives and representations of linear rela-
tions and connections among them. In T. A. Romberg, E. Fennema & T. P.
Carpenter (Eds.), Integrating research on the graphical representations of
functions (pp. 69–100). Mahwah, NJ: Lawrence Erlbaum.

Moses, P., Roe, K., Buxton, R. B., Wong, E. C., Frank, L. R., & Stiles, J.
(2002). Functional MRI of global and local processing in children. Neu-
roimage, 16(2), 415–424.

National Council of Teachers of Mathematics. (2000). Principles and stan-
dards for school mathematics. Reston, VA: NCTM.

Nicolaou, C. T., Nicolaidou, I., & Zacharia, Z. (2007). Enhancing fourth
graders’ ability to interpret graphical representations through the use of
microcomputer-based labs implemented within an inquiry-based activity
sequence. Journal of Computers in Mathematics and Science Teaching,
26(1), 75–99.

Noble, T., & Nemirovsky, R. (1995). Graphs that go backwards. Cambridge,
MA: TERC.

Noble, T., Nemirovsky, R., Dimattia, C., & Wright, T. (2004). Learning
to see: Making sense of the mathematics of change in middle school.
International Journal of Computers for Mathematical Learning, 9(2), 109–
167.

Nemirovsky, R., & Rubin, A. (1991). It makes sense if you think about how
the graphs work. but in reality. . . . In F. Furunghetti (Ed.), Proceedings of
the 15th Annual Conference of the International Group for the Psychology
of Mathematics Education, Vol. 3 (pp. 57–64). Assisi: University of Assisi.

Olive, J., Izsak, A., & Blanton, M. (2002). Investigating and enhancing the
development of algebraic reasoning in the early grades (K-8): The Early
Algebra Working Group. In D. S. Mewborn, P. Sztajn, D. Y. White, H. G.
Wiegel, R. L. Bryant & K. Nooney (Eds.), Proceedings of the 24th annual
meeting of the International Group for the Psychology of Mathematics
Education (Vol. 1, pp. 119–120). Columbus, OH: ERIC.

Padilla, M. J., McKenzie, D. L., & Shaw, E. L. J. (1986). An examination of
the line graphing ability of students in grades seven through twelve. School
Science and Mathematics, 86, 20–26.

Schlieman, A., Carraher, D., & Ceci, S. J. (1997). Everyday cognition. In J. W.
Berry, P. R. Dasen & T. S. Saraswathi (Eds.), Handbook of cross-cultural
psychology, 2nd ed. (Vol. 2, pp. 177–215) Needham Heights, MA: Allyn &
Bacon.

Schoenfeld, A. H., Smith, J., & Arcavi, A. (1993). Learning: The microgenetic
analysis of one student’s evolving understanding of a complex subject
matter domain. In R. Glaser (Ed.), Advances in instructional psychology,
Vol. 4. (pp. 55–175). Hillsdale, NJ: Erlbaum.

Schwartz, B. B., & Hershkowitz, R. (1999). Prototypes: Brakes or levers in
learning the function concept? The role of computer tools. Journal of
Research in Mathematics Education, 30(4), 362–389.

Stokes, M. E., Davis, C. S., & Koch, G. G. (2000). Categorical data analysis
using the SAS system (2nd ed.). Cary, NC: SAS Institute, Inc.

Stylianou, D. A., Smith, B., & Kaput, J. J. (2005). Math in motion: Using
CBRs to enact functions. Journal of Computers in Mathematics and
Science Teaching, 24(3), 299–324.

Swafford, J. O., & Brown, C. A. (1989). Variables and relations. In M. M.
Lindquist (Ed.), Results from the fourth mathematics assessment of the
National Assessment of Educational Progress (pp. 55–63). Reston, VA:
NCTM.

Swatton, P., & Taylor, R. M. (1994). Pupil performance in graphical tasks and
its relationship to the ability to handle variables. British Educational
Research Journal, 20, 227–243.

Turner, E. E., Wilhelm, J., & Confrey, J. (2000). Exploring rate of change
through technology with elementary students. Paper presented at the
Annual Meeting of the American Educational Research Association, New
Orleans, Louisiana.

Wainer, H. (1992). Understanding graphs and tables. Educational Researcher,
21, 14–23.

Wavering, M. J. (1985). The logical reasoning necessary to make line graphs.
Paper presented at the Annual Meeting of the National Association for
Research in Science Teaching, French Lick Springs, Indiana.

Wavering, M. J. (1989). Logical reasoning necessary to make line graphs.
Journal of Research in Science Teaching, 26, 373–379.

Yerushalmy, M., & Schwartz, J. L. (1993). Seizing the opportunity to make
algebra mathematically and pedagogically interesting. In T. A. Romberg, E.
Fennema & T. P. Carpenter (Eds.), Integrating research on the graphical
representation of functions (pp. 41–67). Mahwah, NJ: Lawrence Erlbaum.

Authors’ Note
Keywords: graphing, mathematics learning, middle

school mathematics.

Constructing Graphs

240 Volume 112 (4)



Copyright of School Science & Mathematics is the property of Wiley-Blackwell and its content may not be

copied or emailed to multiple sites or posted to a listserv without the copyright holder's express written

permission. However, users may print, download, or email articles for individual use.


