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This study examined whether knowledge of arithmetic contributes to difficulties with equations. In Experiment
1, children (ages 7 – 11) completed tasks to assess their adherence to 3 operational patterns prevalent in arith-
metic: (a) the strategy of performing all given operations on all given numbers, (b) the ‘‘operations 5 answer’’
problem structure, and (c) the concept that the equal sign means ‘‘the total.’’ Next, children received a lesson on
equations; then, they solved a set of equations. There was a negative relationship between adherence to the
operational patterns and learning. In Experiment 2, undergraduates’ knowledge of the operational patterns was
activated or not. Students whose knowledge was activated did not perform as well on equations. Results
suggest that early-learned patterns constrain future learning and performance.

A central issue in the study of cognitive develop-
ment is how change occurs (Siegler, 2000). Research
addressing this issue has yielded beautifully detailed
accounts of the path, rate, breadth, and variability of
cognitive change (e.g., Adolph, 1997; Dixon & Ban-
gert, 2002; Gershkoff-Stowe, 2002; Siegler, 1989;
Siegler & Stern, 1998). However, some ways of
thinking resist change, even after substantial
amounts of training or instruction. Indeed, some
domains of knowledge (e.g., mathematics, science,
foreign language) are so difficult to learn that many
people fail to achieve basic competence, even after
years of schooling. Consequently, any theory of
learning must explain not only how people change,
but also why people resist change. We examined
change resistance in the domain of mathematics,
focusing on children’s difficulties learning about
mathematical equations.

An equation is any mathematical statement that
uses the equal sign to indicate that two mathematical
expressions are (or are defined to be) equivalent.

Many studies have shown that elementary school
children (ages 7 – 11) have difficulties solving equa-
tions, especially equations with operations on both
sides of the equal sign (e.g., 71415 5 71__; Car-
penter, Franke, & Levi, 2003; Perry, Church, & Gol-
din-Meadow, 1988). In the absence of instruction,
approximately 75% of third- through fifth-grade
children in schools with traditional mathematics
curricula solve such equations incorrectly (Alibali,
1999; McNeil & Alibali, 2000). Even after receiving
instruction, children have limited transfer and poor
retention of correct strategies (Alibali, 1999; McNeil
& Alibali, 2000; Perry, 1991; Rittle-Johnson & Alibali,
1999). Children also judge equality statements with
operations on both sides of the equal sign (e.g.,
314 5 512) as incorrect, nonsensical, or false (Ba-
roody & Ginsburg, 1983; Behr, Erlwanger, & Nichols,
1980; Carpenter et al., 2003).

The mechanisms underlying children’s difficulties
with equations and the ultimate emergence of correct
strategies are not well understood. Many theories
suggest that difficulties are due to something that
children lack. For example, children between ages 7
and 11 are said to lack domain-general logical
structures, such as the ability to coordinate rela-
tionships of equivalence or to view an operation as
an object (Piaget & Szeminska, 1941/1995; Sfard &
Linchevski, 1994). Children are also said to lack a
mature working memory system, whether working
memory is defined in terms of total capacity (Cowan,
Nugent, Elliot, Ponomarev, & Saults, 1999; Pascual-
Leone, 1970), efficiency (Case, Kurland, & Goldberg,
1982), or processing speed (Hulme, Thomson, Muir,
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& Lawrence, 1984; Kail & Park, 1994; Kail & Salt-
house, 1994). Children are also said to lack profi-
ciency with basic arithmetic operations, which is
assumed to be necessary for advanced thinking and
problem solving in mathematics (Anderson, 2002;
Haverty, 1999; Kotovsky, Hayes, & Simon, 1985).
Thus, according to several prevailing accounts,
equation-learning difficulties are due to something
that children lack.

In contrast to this focus on what children lack,
some scientists (e.g., Flege, Yeni Komshian, & Liu,
1999; Kuhl, 2000; McNeil & Alibali, 2002, 2004;
Schauble, 1990; Zevin & Seidenberg, 2002) have
considered the role of existing knowledge in learning
difficulties. The general theoretical claim is that early
learning constrains later learning. This view is de-
rived from classic approaches to cognition and per-
ception that focus on top-down processes (e.g.,
Bruner, 1957; Rumelhart, 1980; Tolman, 1948). Con-
temporary theorists (e.g., Zevin & Seidenberg, 2002)
explain the effects in terms of entrenchment of early-
learned patterns. According to this view, the patterns
with which people initially gain experience become
entrenched, and learning difficulties arise when to-
be-learned information overlaps with, but does not
map directly onto, entrenched patterns.

Within this framework, we propose the change-
resistance account of children’s equation-learning
difficulties. This account posits that children’s equation-
learning difficulties are due, at least in part, to their
early and elongated experience with arithmetic op-
erations (McNeil & Alibali, 2002). According to this
view, excessive practice with arithmetic operations
hinders subsequent learning of more complex
equations. Thus, in contrast to accounts that focus on
what children lack, the change-resistance account
focuses on what children have.

Children’s early mathematics experience in the
United States is dominated by arithmetic operations
(Baroody & Ginsburg, 1983; Beaton et al., 1996;
McNeil et al., 2004; Valverde & Schmidt, 1997).
Children encounter the same operational patterns
repeatedly, virtually without exception (Seo &
Ginsburg, 2003). As a result, children’s internal rep-
resentations of these patterns gain strength, and
children develop what Hatano (1988) termed ‘‘rou-
tine expertise’’ with arithmetic operations. Children
are proficient at applying what they have learned
(patterns and procedures), but they may not under-
stand the concepts that underlie what they have
learned (Hatano, 1988). As a result, children apply
their knowledge of the operational patterns inflexi-
bly and do not generate new strategies when they
encounter novel equations.

We argue that children learn three operational
patterns that ultimately hinder their ability to learn
more complex equations. First, children learn the
equation-solving strategy ‘‘perform all given opera-
tions on all given numbers.’’ For example, when
presented with a typical addition problem such as
2131415 5 __ , children add all the numbers and
put the total, 14, in the blank (McNeil & Alibali, 2000;
Perry et al., 1988). Second, children learn a percep-
tual pattern related to the structure of equations,
namely the ‘‘operations 5 answer’’ structure (McNeil
& Alibali, 2004; see also Seo & Ginsburg, 2003). In a
typical addition problem such as 2131415 5 __ , the
numbers and operations are to the left of the equal
sign, and the answer blank is to the right. Third,
children learn a particular concept of the equal sign.
Specifically, they infer that the equal sign means ‘‘the
total’’ (McNeil & Alibali, in press; see also Baroody &
Ginsburg, 1983; Behr et al. 1980; Kieran, 1981). Note
that our use of the term operational differs from the
Piagetian use of the term. We refer to these patterns
as operational patterns because children learn them
from their experience with arithmetic operations.

The change-resistance account holds that the en-
trenchment of operational patterns contributes to
children’s difficulties with equations. When children
encounter novel equations, their representations of
the operational patterns are activated, and these
representations control attention, determine what is
encoded, and influence how information is inter-
preted. This view is compatible with accounts of how
knowledge influences attention and performance in
other domains (Bruner, 1957; Chase & Simon, 1973;
Chi, 1978; Knoblich, Ohlsson, Haider, & Rhenius,
1999; Knoblich, Ohlsson, & Raney, 2001; Samuelson,
2001). However, it challenges accounts of problem
solving that imply that children need more practice
with arithmetic operations to solve complex equa-
tions successfully (e.g., Anderson, 2002; Anderson,
Reder, Lynne, & Lebiere, 1996; Haverty, 1999; Ko-
tovsky et al., 1985).

Entrenchment accounts such as the change-
resistance account are closely related to the classic
phenomenon of mental set, in which a familiar, well-
practiced approach to solving a problem can inter-
fere with subsequent problem solving (Luchins,
1942; Wiley, 1998). Luchins (1942) illustrated this
phenomenon in his famous water jar experiments.
After solving a set of problems using a multistep
strategy, participants failed to use an efficient, single-
step strategy on a similar problem. The more prob-
lems solved with the multistep strategy, the more
likely participants were to use the multistep strategy
on the single-step problem.
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The change-resistance account goes beyond Lu-
chins’s (1942) work in three ways. First, it posits that
mental sets can be constructed and applied not only
within a single problem-solving experience, as in
Luchins’s experiments, but also over the course of
development (McNeil & Alibali, 2000). Children’s
knowledge of operational patterns is constructed
over the course of elementary school, and children
may apply that knowledge any time they encounter
an equation. Second, the change-resistance account
argues that mental sets are applied not only at the
expense of efficiency, as in Luchins’s experiments,
but also at the expense of correctness (McNeil &
Alibali, 2004). Children may adhere to their knowl-
edge of operational patterns even when it does not
lead to correct solutions. Third, the change-resistance
account suggests that mental sets can interfere not
only with performance, as in Luchins’s experiments,
but also with learning. We argue that knowledge of
operational patterns hinders children’s ability to
learn from instruction on novel equations.

The change-resistance account is also compatible
with claims that strategy variability is an impetus for
cognitive change (e.g., Alibali, 1999; Alibali & Gol-
din-Meadow, 1993; Siegler, 1989, 1994). Indeed, it
seems likely that entrenchment and strategy varia-
bility are negatively correlated. The more experience
and practice a child has with a particular strategy,
the more entrenched that strategy will be, and the
less likely the child will be to exhibit strategy varia-
bility across problems. For example, as children gain
experience with the operation of addition, they
proceed from using a variety of addition strategies to
relying primarily on a single strategyFretrieval
(Shrager & Siegler, 1998; Siegler, 1987).

However, it is important to bear in mind that less
variability does not necessarily mean deeper en-
trenchment. Consider an example from McNeil and
Alibali (2000). Children were presented with an
equation such as 71415 5 71__ and instructed to
solve it using the grouping strategy (i.e., cancel the
two 7s and add 415). Immediately afterward, chil-
dren were presented with a set of similar equations,
and most children used the grouping strategy to
solve all of them. Two weeks later, children were
again presented with a set of similar equations, but
this time, many children did not use the grouping
strategy. In this example, children did not display
strategy variability after learning the grouping strat-
egy, but the grouping strategy was not entrenched.
Thus, although entrenchment and lack of variability
may be related, they are not synonymous. Because
the change-resistance account focuses specifically on
the role of entrenched knowledge in learning and

performance difficulties, we controlled for potential
effects of strategy variability in the present work.

Past work supports the view that entrenched
knowledge of operational patterns contributes to
difficulties with equations. Elementary school chil-
dren (ages 7 – 11) have been shown to adhere to the
operational patterns when they encounter novel
equations. For example, when asked to solve equa-
tions such as 71415 5 71__, most children adhere
to the strategy of performing all given operations on
all given numbers (i.e., the add-all strategy in this
context) and put 23 in the blank (McNeil & Alibali,
2000, 2002, 2004). When asked to reconstruct the
equation after viewing it briefly, many children ad-
here to the ‘‘operations 5 answer’’ problem structure
and write 7141517 5 __ (McNeil & Alibali, 2002,
2004). When asked to define the equal sign, many
children adhere to the operational equal sign concept
and say, ‘‘It means the total the total’’ (McNeil &
Alibali, in press). Thus, there are data to suggest that
children’s performance on novel equations suffers
because they adhere to the operational patterns.

The change-resistance account predicts not only
that children will adhere to the operational patterns
when they encounter novel equations, but also that
children’s adherence to the operational patterns
contributes to their learning difficulties. However,
the role of change resistance in learning has yet to be
tested. No evidence has addressed whether knowl-
edge of the operational patterns hinders children’s
ability to learn from instruction on equations.

Equally important, although past work has dem-
onstrated a relationship between adherence to the
operational patterns and poor performance on
equations such as 71415 5 71__, all of the evidence
has been correlational. The change-resistance ac-
count posits that adherence to the operational pat-
terns causes poor performance on equations.
Understanding the causes of poor performance is
important because of the potential role of perform-
ance in learning and cognitive change (e.g., Sophian,
1997). Each time a problem is solved, the results may
feed back to influence the solver’s knowledge about
that class of problems (e.g., McClelland, 1995; Shra-
ger & Siegler, 1998). Thus, understanding the causes
of poor performance on equations may reveal the
roots of children’s equation-learning difficulties.

In this article we present two experiments de-
signed to test the relationship between knowledge of
operational patterns and difficulties with equations.
In the first experiment, we used an individual dif-
ferences approach to investigate whether children’s
adherence to the operational patterns influences
whether they learn from instruction on equations.
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This experiment is the first to investigate the rela-
tionship between knowledge of arithmetic opera-
tions and difficulties learning about equations. In the
second experiment, we tested the potential causal
link between knowledge of operational patterns and
difficulties solving equations. We did so by activat-
ing participants’ knowledge of the operational
patterns and assessing their equation-solving
performance. Again, it is important to note that
many theories (and educators) argue that practice
and proficiency with basic arithmetic operations is
the key to improving children’s achievement on
complex equations. According to this view, activat-
ing people’s knowledge of arithmetic operations
should facilitate equation-solving performance.

Experiment 1

The purpose of Experiment 1 was to investigate the
relationship between amount of adherence to the
operational patterns and likelihood of learning from
a lesson on equations. To this end, we first measured
individual differences in adherence to the opera-
tional patterns. Then, we gave children one of four
brief lessons on equations. The lessons were based
on those used in previous research (Alibali, McNeil,
& Perrott, 1998; Rittle-Johnson & Alibali, 1999) that
have been shown to remedy children’s adherence to
the operational perceptual pattern (i.e., ‘‘operations 5

answer’’ problem structure) and the operational
concept of the equal sign (i.e., the equal sign means
‘‘the total’’). Finally, we examined which (if any)
children learned from the brief lessons by testing
their equation-solving performance. We operation-
alized learning as the ability to used the knowledge
gained from the lessons to generate new strategies
for solving equations. The change-resistance account
posits that children who adhere most to the opera-
tional patterns should be least likely to generate new
equation-solving strategies.

Method

Participants

Participants were 91 children ranging in age from
7 years 10 months to 11 years 2 months (M 5 9 years
2 months). Children were recruited from six schools
(three public, three parochial) in the greater Madi-
son, Wisconsin, area. The targeted schools spanned a
broad range of socioeconomic levels as indicated by
the percentage of children receiving free or reduced
lunch in the three public schools (57%, 25%, and
11%). Because the purpose of the experiment was to

predict individual differences in learning, 24 chil-
dren (M age 5 9 years 5 months) were excluded from
the sample because they solved at least one of the
equations on the equation-solving measure (de-
scribed later) correctly before the lesson. Of the 24
children who solved at least one of the equations
correctly before the lesson, 1 (4%) was from the
public school with the lowest socioeconomic status, 8
(33%) were from the public school with intermediate
socioeconomic status, and 9 (37.5%) were from the
public school with the highest socioeconomic status.
The remaining 6 were from the three parochial
schools.

The final sample consisted of 67 children (29 boys,
38 girls; 6 African American, 61 Caucasian) ranging
in age from 7 years 10 months to 11 years 2 months
(M age 5 9 years 0 months) who solved a set of
equations with operations on both sides of the equal
sign incorrectly before the lesson. It is important to
note that children in this age range are very familiar
with the operation of addition. Most children can
solve addition problems correctly (with the use of
informal strategies) when they enter kindergarten
around the age of 5 (Geary & Burlingham-Dubree,
1989; Siegler & Shrager, 1984), and after children
enter formal schooling, they receive a great deal of
practice with the operation of addition. Thus, it is
reasonable to assume that the children in this study
were experienced addition problem solvers.

Measures

Equation solving. The equation-solving measure
consisted of three equations with operations on both
sides of the equal sign (e.g., 71415 5 71__). We
chose equations of this type because past work has
shown that children (ages 7 – 11) find such equations
difficult (e.g., McNeil & Alibali, 2004). The experi-
menter placed each equation on an easel and said,
‘‘Try to solve the problem as best as you can, and
then put your answer in the blank.’’ After children
wrote their solutions, the experimenter said, ‘‘Can
you tell me how you got x?’’ (with x symbolizing the
solution). After explaining each solution, children
were asked to rate how certain they were about their
‘‘way of doing the problem’’ on a 7-point scale that
ranged from 1 (it’s definitely wrong) to 7 (it’s definitely
right), with 4 (I’m not sure if it’s right or wrong) as the
midpoint.

Problem structure. Two tasks made up the problem
structure measure. The first was taken from Rittle-
Johnson and Alibali (1999). Children were asked to
reconstruct three equations with operations on both
sides of the equal sign after viewing each for 5 s. The
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second task was a recognition version of the first
task; it also contained three equations with opera-
tions on both sides of the equal sign. Before viewing
each equation, children were given a sheet of paper
face down with seven equations on it. One of the
equations on the sheet matched the equation that
children would be shown. The other six equations
depicted errors that children typically make when
reconstructing equations with operations on both
sides of the equal sign, including the ‘‘operations 5

answer’’ foil (e.g., for the equation 71415 5 71__,
the ‘‘operations 5 answer’’ foil would be
7141517 5 __). After viewing an equation for 5 s,
children were instructed to turn the sheet of paper
over, find the problem they just saw, and circle it.
Children repeated this process for all three equa-
tions.

Equal sign definition. Two tasks made up the equal
sign definition measure. Both were taken from Rittle-
Johnson and Alibali (1999). In the first task, the ex-
perimenter presented an equation with operations
on both sides and pointed to the equal sign as she
said, ‘‘I want you to tell me what you think this math
symbol means.’’ In the second task, children were
asked to rate the ‘‘smartness’’ of six fictitious stu-
dents’ definitions as ‘‘not so smart,’’ ‘‘kind of smart,’’
or ‘‘very smart.’’ The definitions were: ‘‘the answer
to the problem,’’ ‘‘repeat the numbers,’’ ‘‘the end of
the problem,’’ ‘‘something is equal to another thing,’’
‘‘two amounts are the same,’’ and ‘‘the total.’’

Procedure

Children participated individually in one video-
taped session conducted by a female experimenter in
a quiet room during school hours. Children first
completed the equation-solving measure, followed
by the problem structure and equal sign definition
measures in random order. Then, children were
randomly assigned to one of four brief lesson con-
ditions in a 2 (problem structure lesson or no prob-
lem structure lesson) � 2 (equal sign concept lesson
or no equal sign concept lesson) factorial design.
During the intervention, children in all four condi-
tions were presented with an equation with the
correct solution in the blank (61417 5 6111). In the
control condition, children were shown the correctly
solved equation and told that it was a correctly
solved equation. They were encouraged to think
about the correctly solved equation for 1 min. Chil-
dren in the other three conditions were also pre-
sented with the correctly solved equation, told that it
was a correctly solved equation, and encouraged to
think about it. In addition, children who received the

problem structure lesson were told to ‘‘notice where
the equal sign is in the problem,’’ and they were
asked to point to the equal sign (cf. Alibali et al.,
1998). Children who received the equal sign concept
lesson were told to ‘‘notice that the equal sign means
that the things on one side of it have to be the same
amount as the things on the other side of it,’’ and
they were asked to repeat the definition (cf. Rittle-
Johnson & Alibali, 1999). All of the lessons were
brief, lasting a total of 1 min (timed with a timer).
After the lesson, there was a manipulation check in
which children completed the problem structure and
equal sign definition measures in random order. The
manipulation check was followed by the equation-
solving measure. Finally, children solved four
transfer problems, two that differed from the equa-
tions on the equation-solving measure in terms of the
position of the blank (e.g., 61518 5 __18) and two
that differed in that they did not include a repeated
addend (e.g., 41317 5 51__).

Coding

Equation solving. Strategies on the equation-solv-
ing measure were coded using the system developed
by Perry et al. (1988). Strategies were assigned based
on children’s problem solutions and verbal expla-
nations. The most common strategy was the add-all
strategy (e.g., for 71415 5 71__ , writing 23 in the
blank and saying ‘‘I added up all the numbers’’). The
add-all strategy was used on 87% of equations before
the lesson. Children rarely used other incorrect
strategies: Three percent of the equations were
solved using the carry strategy (e.g., writing 4 in the
blank and saying ‘‘There was a 4 here, so I put 4’’),
8% were solved using the add-to-equal-sign strategy
(e.g., writing 16 in the blank and saying ‘‘I added
seven plus four plus five’’), and 2% were solved
using other idiosyncratic strategies. Age was not
correlated with use of the add-all strategy before the
lesson (r 5 � .097, p 5 .45).

Children’s certainty ratings about their way of
doing the problem were used to categorize children
according to whether they thought they used a cor-
rect strategy. Recall that certainty ratings were made
using a scale that ranged from 1 (it’s definitely wrong)
to 7 (it’s definitely right), with 4 (I’m not sure if it’s right
or wrong) as the midpoint. Age was not correlated
with average certainty rating (r 5 � .082, p 5 .53).

Problem structure. Children’s reconstructions were
coded using a system developed by McNeil and
Alibali (2004). Each reconstruction was examined for
conceptual errors. Conceptual errors involve inac-
curate reconstructions of the problem structure, such
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as omitting the equal sign or one of the plus signs
(e.g., for the equation 71415 5 71__, writing
71415 5 7__). Cases in which the right addend was
omitted altogether and cases in which equations
were converted to the traditional ‘‘operations 5

answer’’ problem structure were also classified as
conceptual errors. Errors in reconstructing the par-
ticular numbers or order of numbers were not con-
sidered conceptual errors (e.g., for the problem
71415 5 71__, writing 41715 5 71__). Recon-
structions were coded as correct if they were free of
conceptual errors. On the recognition task, each of
the three responses was scored as correct or incorrect
based on whether children circled the correct equa-
tion on the sheet provided. Performance on the recall
and recognition tasks was correlated (r 5 .60,
po.001).

Equal sign definitions. Children’s definitions were
coded according to a system developed by McNeil
and Alibali (in press). Definitions were first coded as
relational (e.g., ‘‘two amounts are the same’’) or not.
Definitions that were not relational were further ex-
amined for whether they conveyed an arithmetic
operation such as addition (e.g., ‘‘the total’’) or not
(e.g., ‘‘the end of the problem’’). None of the children
gave a relational definition before the brief lesson.
Children’s ratings of the fictitious students’ defini-
tions of the equal sign were converted to numerical
scores. Two points were given for ‘‘very smart’’ rat-
ings, 1 point was given for ‘‘kind of smart’’ ratings,
and 0 points were given for ‘‘not so smart’’ ratings.
As a manipulation check, the average rating for the
incorrect definitions was subtracted from the aver-
age rating for the relational definitions to yield a
difference score. A positive difference score in this
case indicates that relational definitions such as ‘‘two
amounts are the same’’ and ‘‘something is equal to
another thing’’ were rated as smarter than less so-
phisticated definitions. On the whole, children’s
definitions and ratings were compatible with one
another. For example, only 5 children rated the def-
inition the total as ‘‘not so smart,’’ and none of these 5

children expressed the idea of adding, totaling, or
summing in their own definitions.

Adherence to the operational patterns. We assessed
children’s adherence to the three operational pat-
terns on the prelesson measures. On the equation-
solving measure, children were coded as adhering to
the operational strategy if they (a) used the add-all
strategy on at least two of three equations (see Table
1) and (b) gave the add-all strategy an average cer-
tainty rating greater than 4 (on the 7-point scale).
Recall that ratings of 4 or less indicate that children
do not think their strategy is correct. Children who
use the add-all strategy, but do not rate it as correct,
are likely operating according to a back-up strategy
rather than an entrenched pattern (see Siegler, 1983).
On the problem structure measure, children were
coded as adhering to the operational pattern if they
showed evidence of converting at least two equa-
tions to typical addition problems (on either the re-
construction task or the recognition task; see Table 1).
Recall that children exhibited a variety of incorrect
ways of thinking on the problem structure measure,
only one of which involved converting the equations
to typical addition problems. On the equal sign
definition measure, children were coded as adhering
to the operational pattern if they showed evidence of
thinking that the equal sign represents an arithmetic
operation, such as addition. Children could show
this in one of two ways. First, they could express the
idea of adding, totaling, or summing in the defini-
tions they provided (see Table 1). Or, alternatively,
they could rate the definition the total as very smart.
Recall that none of the children gave a relational
definition of the equal sign before the lesson. To es-
tablish reliability in evaluating adherence to the op-
erational patterns, a second coder recoded the data
for 10 participants. Reliability was 100%.

Children were assigned a score based on the
number of prelesson measures (out of three) on
which they adhered to the operational patterns.
Thus, children’s operational pattern scores ranged
from 0 to 3. The number of measures on which the

Table 1

Examples of Responses on Each Measure That Would Be Coded as Adhering or Not Adhering to the Operational Patterns for the Equation

71415 5 71__

Code Problem solving (solution k explanation) Problem structure Equal sign definition

Adheres 23 k ‘‘I added them all up.’’ 7141517 5 __ ‘‘Add up all those together.’’

Adheres 22 k ‘‘I added 7 plus 4 plus 5 plus 7.’’ 7141517 5 ‘‘The total of the problem.’’

Does not adhere 4 k ‘‘There was a 4 here, so I put 4.’’ 71415 5 7 5 __ ‘‘What the problem is.’’

Does not adhere 1 k ‘‘I just guessed.’’ 71415 5 17__ ‘‘It’s like where you end the problem.’’

Note. All responses are incorrect.
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pattern was exhibited was considered to reflect the
extent of entrenchment of children’s knowledge of
the operational patterns (i.e., 3 reflects the greatest
entrenchment).

Table 1 presents examples of responses that would
and would not be coded as adhering to the opera-
tional patterns for each measure. It is important to
emphasize that all children solved the problems in-
correctly before the brief lesson, regardless of
whether they adhered to the operational patterns.
Moreover, there is no reason to believe that the
thinking of children who do not adhere to the op-
erational patterns is closer to correct than is the
thinking of children who do adhere to the opera-
tional patterns. For example, a child who writes 1 in
the blank when presented with the equation
81716 5 81__ is just as wrong as a child who writes
29 in the blank. Similarly, a child who reconstructs
the equation 31415 5 31__ as 31415 5 13 __ is
just as wrong as a child who reconstructs the equa-
tion as 3141513 5 __. Thus, outside of the change-
resistance account, there is no reason to expect
learning differences between children who do or do
not adhere to the operational patterns.

Results and Discussion

Manipulation Check

We examined children’s performance on the prob-
lem structure and equal sign definition measures
both before and after the lessons. Our goal was to
determine whether the brief lessons provided chil-
dren with new, correct ways of thinking about the
problem structure and the concept of the equal sign.
A 2 (problem structure lesson or no problem struc-
ture lesson) � 2 (equal sign concept lesson or no
equal sign concept lesson) analysis of covariance
(ANCOVA) was performed with age (in days) as a
covariate and pre- to post-lesson change in number
correct on the problem structure measure as the de-
pendent variable. As expected, the analysis revealed
a significant main effect for the problem structure
lesson, F(1, 63) 5 4.14, p 5 .04, Z2

p ¼ :068. Children
who received the problem structure lesson improved
their performance on the problem structure measure
after the lesson (M 5 1.78, SD 5 1.31) more than did
children who did not receive the problem structure
lesson (M 5 1.00, SD 5 1.65). None of the other ef-
fects was significant (all Fso1). A similar 2 � 2
ANCOVA was performed with pre- to post-lesson
change in difference score on the smartness ratings
portion of the equal sign definition measure as the
dependent variable. Recall that a positive difference

score indicates that children rated relational defini-
tions such as ‘‘two amounts are the same’’ as smarter
than less sophisticated definitions such as ‘‘the end
of the problem.’’ As expected, the analysis revealed a
significant main effect for equal sign concept lesson,
F(1, 63) 5 31.41, po.001, Z2

p ¼ :35. Children who re-
ceived the equal sign concept lesson improved their
smartness ratings after the lesson (M 5 0.89,
SD 5 0.86) more than did children who did not re-
ceive the equal sign concept lesson (M 5 � 0.08,
SD 5 0.50). None of the other effects was significant;
for the main effect of problem structure lesson, F(1,
63) 5 1.61, p 5 .21; all other Fso1.

The manipulation checks indicate that, as in pre-
vious work (Alibali et al., 1998; Rittle-Johnson &
Alibali, 1999), the brief lessons imparted the in-
tended information about equations. Children were,
in general, able to take in the information in its
specific form. The main question, however, is
whether children really learned from the lessons.
That is, did they use the knowledge gained from the
brief lessons to generate new strategies for solving
equations? Furthermore, did they generate correct
problem-solving strategies?

Effects of Adherence to the Operational Patterns

Recall that all children solved the equations in-
correctly before the brief lesson. Furthermore, chil-
dren’s operational pattern score (0 – 3) was
independent of instruction condition (Fs for main
effects and interactiono1). Our main question was
whether children’s adherence to the operational
patterns influenced strategy change after the brief
lessons. To foreshadow the results, the lessons
themselves did not predict changes in strategy use.
This is not surprising, given that (a) all four of the
lesson conditions provided at least some new, correct
information about the equations that children could
use in constructing correct equation-solving strate-
gies, and (b) we predicted individual differences in
learning based on the extent to which children ad-
hered to the operational patterns before the lessons.

Consistent with prior work (e.g., Alibali, 1999;
Alibali et al., 1998), children were classified as gen-
erating a strategy if they solved any of the postlesson
equations using a different strategy than they had
used to solve the prelesson equations. However, it is
important to note that we cannot be entirely certain
that children actually generated new strategies after
the lesson. It is possible that children had the strat-
egies in their repertoires before the lesson but did not
use them until after the lesson. We use the term
generate for conciseness throughout this article, but
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we acknowledge that it is possible that our findings
reflect changes in children’s strategy choices rather
than strategy generation.

We used logistic regression to examine the rela-
tionship between operational pattern score (0 – 3)
and strategy generation (generate or not). Recall that
the change-resistance account predicts a negative
linear relationship between operational pattern cat-
egory and strategy generation. We also included the
two lesson conditions (problem structure lesson and
equal sign concept lesson) and their interaction, as
well as age (in days) as predictors in the model.

As predicted by the change-resistance account,
there was a significant negative linear relationship
between operational pattern score (0 – 3) and strategy
generation (generate or not) when controlling for the
other predictors in the model, b̂ ¼ �1:15, z 5 � 2.66,
Wald (1, N 5 67) 5 7.09, p 5 .008. None of the other
predictors was significant (problem structure lesson:
b̂ ¼ �1:38, z 5 � 1.63; equal sign concept lesson:
b̂ ¼ �0:94, z 5 � 1.13; interaction of lesson condi-
tions: b̂ ¼ 1:29, z 5 1.09; age: b̂ ¼ 0:002, z 5 1.58).

Figure 1 displays the relationship between oper-
ational pattern score and the proportion of children
who generated a strategy after the brief lesson. The
model estimates that the odds of generating a strat-
egy decrease by 3.15 for each unit increase in ad-
herence to the operational patterns. Thus, the odds of
strategy generation are nearly 9.5 times lower for
children who adhere to all three operational patterns
than for children who do not adhere to any of the
operational patterns. Very few (1 of 9) children who
adhered to the operational patterns on all three
measures generated a strategy after the lesson,
whereas all (5 of 5) children who did not adhere to
the operational patterns on any of the measures did.
Such a high proportion of strategy generation by
children who did not adhere to the operational pat-
terns is surprising, given that the lessons lasted for
only 1 min. A moderate proportion of children who
adhered to the operational patterns on one or two
measures generated a strategy (14 of 22 and 13 of 31,
respectively). Again, all children used incorrect
strategies before the intervention; therefore, it was
adherence to the operational patterns per se that was
associated with strategy generation after the lessons.

More detailed information about the relationship
between adherence to the operational patterns and
strategy generation is presented in Table 2, which
displays the number of children who adhered to the
operational patterns on each of the three measures,
along with the proportion of children in each cell
who generated a strategy. On the whole, children
who adhered to the operational pattern on a given

measure were less likely than children who did not
adhere to the operational pattern on that measure to
generate a strategy (equal sign definition: Ms 5 .55
vs. .72; problem solving: Ms 5 .35 vs. .92; problem
structure: Ms 5 .62 vs. .65).

We next examined whether children generated
correct strategies after the lesson. Children were
classified as generating a correct strategy if they
solved any of the three postlesson equations using a
correct strategy. For example, children would be
classified as generating a correct strategy for the
equation 71415 5 71__ if they put the solution 9 in
the blank and said that they added 4 plus 5 to get 9.

We used logistic regression to examine the rela-
tionship between operational pattern score (0 – 3)
and use of a correct strategy (correct or not). The
predictor variables in the model were identical to
those used in the previous logistic regression model.
As predicted by the change-resistance account, there
was a significant negative linear relationship be-
tween operational pattern score (0 – 3) and use of a
correct strategy (correct or not) when controlling for
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Figure 1. Proportion of children who used a new strategy after the
lesson as a function of operational pattern score.

Table 2

Proportion of Children in Each of the Possible Combinations of Opera-

tional Pattern Adherence on the Equal Sign Definition Measure (D), the

Equation-Solving Measure (S), and the Problem-Structure Measure (R)

Who Generated a Strategy After the Lesson

D adheres S adheres S does not adhere

R adheres .11 (n 5 9) 1.0 (n 5 1)

R does not adhere .41 (n 5 22) .70 (n 5 10)

D does not adhere S adheres S does not adhere

R adheres .375 (n 5 8) 1.0 (n 5 2)

R does not adhere .50 (n 5 10) 1.0 (n 5 5)
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the other predictors in the model, b̂ ¼ �0:92,
z 5 � 2.34, Wald (1, N 5 67) 5 5.47, p 5 .02. Figure 2
displays the relationship between operational pat-
tern score (0 – 3) and the proportion of children who
used a correct strategy after the brief lesson. The
model estimates that the odds of using a correct
strategy decrease by 2.52 for each unit increase in
adherence to the operational patterns. Thus, the odds
of using a correct strategy are more than 7.5 times
lower for children who adhere to all three opera-
tional patterns than for children who do not adhere
to any of the operational patterns. None of the other
predictors was significant (problem structure lesson:
b̂ ¼ 1:10, z 5 1.34; equal sign concept lesson: b̂ ¼ 0:15,
z 5 0.67; interaction of lesson conditions: b̂ ¼ �1:34,
z 5 � 1.17; age: b̂ < :001, z 5 0.18). Thus, as predict-
ed by the change-resistance account, there was a
significant negative linear relationship between ad-
herence to the operational patterns and whether
children used a correct strategy after receiving a brief
lesson.

Finally, we used linear regression to examine the
relationship between operational pattern score (0 – 3)
and performance on the transfer problems. The
predictor variables in the model were identical to
those used in the previous logistic regression mod-
els. The dependent variable was number of correctly
solved transfer problems (out of 4). As shown in
Figure 3, there was a significant negative linear re-
lationship between operational pattern score and
transfer performance when controlling for the other
predictors in the model, b̂ ¼ �0:94, z 5 � 3.56,
p 5 .001. The effect of problem structure lesson was
marginal, b̂ ¼ 0:98, z 5 1.74, p 5 .09, and none of the
other predictors was significant (equal sign concept
lesson: b̂ ¼ 0:90, z 5 1.63; interaction of lesson con-
ditions: b̂ ¼ �0:86, z 5 � 1.06; age: b̂ ¼ :0004,
z 5 0.4). Thus, consistent with the previous analyses,

adherence to the operational patterns was negatively
associated with performance on equations after a
brief lesson.

Do These Effects Hold When Controlling for Strategy
Variability?

It is, of course, possible that the relations de-
scribed thus far depend not on entrenchment of the
operational patterns per se, but on strategy varia-
bility, which may be confounded with entrenchment.
Many past studies have documented relations be-
tween strategy variability and learning; therefore, it
is important to examine whether the relations be-
tween adherence to the operational patterns and
learning hold even when controlling for strategy
variability.

Only 7% of children (5 of 67) displayed variability
in their problem-solving strategies on the experi-
mental pretest; therefore, it was not possible to ex-
amine directly the relation between adherence to the
operational patterns and strategy variability in this
sample. One possible reason for the low level of
variability observed in this experiment is that the
equation-solving measure was limited to equations
with the blank in final position (e.g., 31415 5 31__).
McNeil and Alibali (2004) showed that equations of
this type are particularly difficult for children. An-
other reason may be the task instructions (i.e., ‘‘Try to
solve the problem as best as you can, and then put
your answer in the blank’’). The instruction to put an
‘‘answer’’ may have led children to use the add-all
strategy.

Although we could not examine relations between
adherence to the operational patterns and strategy
variability, it was possible to examine whether the
relations between adherence to the operational
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Figure 2. Proportion of children who used a correct strategy after
the lesson as a function of operational pattern score.
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Figure 3. Average number of transfer problems solved correctly
(out of 4) as a function of operational pattern score.
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patterns and learning held in the subsample of
children who did not display strategy variability
(i.e., children who used the same strategy to solve all
three pretest problems, n 5 62). Indeed, for this
subsample, there was a significant negative linear
relationship between operational pattern score (0 – 3)
and strategy generation (generate or not) when
controlling for the other predictors in the model,
b̂ ¼ �1:06, z 5 � 2.35, Wald (1, N 5 62) 5 5.52,
p 5 .02. Additionally, there was a significant negative
linear relationship between operational pattern score
and use of a correct strategy (correct or not) when
controlling for the other predictors in the model,
b̂ ¼ �0:84, z 5 � 1.94, Wald (1, N 5 62) 5 3.75,
p 5 .05. Finally, there was a significant negative lin-
ear relationship between operational pattern score
and transfer performance, (b̂ ¼ �0:87, z 5 � 3.05,
p 5 .004). Thus, the findings from the subsample
were consistent with those from the full sample.

Summary

The results of Experiment 1 support the change-
resistance account. As children’s adherence to the
operational patterns increased, the odds of learning
from a brief lesson on equations decreased. Children
who did not adhere to any of the operational pat-
terns were most likely to generate a correct strategy
for solving the equations after a lesson. Findings
corroborate the predicted relationship between chil-
dren’s knowledge of arithmetic operations and
equation-learning difficulties. However, Experiment
1 used a correlational design. Individual differences
before a lesson on equations predicted who would
and would not learn from the lesson. It would be
more convincing to demonstrate that knowledge of
the operational patterns per se causes difficulties
with equations. Thus, in Experiment 2, we activated
participants’ knowledge of the operational patterns
and examined effects on equation-solving perform-
ance.

Experiment 2

The change-resistance account predicts that equa-
tion-solving performance should be worse when
knowledge of the operational patterns is activated.
To test this prediction, we compared the equation-
solving performance of participants whose knowl-
edge of operational patterns was activated with
participants whose knowledge of operational pat-
terns was not activated. We believed it would be
imprudent to activate (and consequently strengthen)
elementary school children’s knowledge of the op-

erational patterns because they have not yet learned
to solve equations correctly with operations on both
sides of the equal sign. Therefore, in Experiment 2
we chose to work with undergraduate participants.
Because undergraduates already know how to solve
the equations, any effects of knowledge activation
would likely be ephemeral. Given the obvious dif-
ferences between undergraduates and elementary
school children, we acknowledge that we cannot be
certain that the same processes are at work in the two
groups. However, evidence for a causal link between
knowledge of the operational patterns and difficul-
ties with equations in undergraduates would help
build a case for the change-resistance account. Pre-
vailing theories of problem solving (Anderson, 2002;
Anderson et al., 1996; Haverty, 1999; Kotovsky et al.,
1985)Fas well as traditional educational practic-
esFpredict that equation-solving performance
should be facilitated when knowledge of arithmetic
operations is activated, but the change-resistance
account predicts the opposite.

Method

Participants

Twenty-eight undergraduates participated; 4 were
excluded because of experimenter error. The final
sample consisted of 24 undergraduates (8 men, 16
women; 1 African American, 21 Caucasian, 2 His-
panic) from the University of Wisconsin – Madison
Introductory Psychology participant pool. Partici-
pants received one extra credit point toward their
Introduction to Psychology grade for their partici-
pation.

The mathematics experience of undergraduates in
the participant pool varies widely. However, the
minimum mathematics experience required for ad-
mission to the University is one algebra course, one
geometry course, and one advanced math course
(e.g., advanced algebra, trigonometry, calculus). The
average math ACT score reported by undergradu-
ates who have participated in similar experiments in
our lab is 27 (approximately the 89th percentile; ACT
Inc., 2005).

Apparatus

Stimuli were presented on iMac G4 computers
(17-in. screen, standard keyboard) using the Psy-
Scope 1.2.5 interactive graphic system for experi-
mental design and control (Cohen, MacWhinney,
Flatt, & Provost, 1993).
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Procedure

Participants were seated at computers in indi-
vidual cubicles. The session had two main phases: an
activation phase and an equation-solving phase. The
purpose of the activation phase was to activate par-
ticipants’ knowledge of the operational patterns
experimentally. Consequently, in contrast to Experi-
ment 1, we had control over whether participants’
knowledge of the operational patterns was activated.
Participants were randomly assigned either to an
experimental condition, in which their knowledge of
all three operational patterns was activated, or to a
control condition, in which their knowledge of the
operational patterns was not activated. The condi-
tions were designed to parallel the extreme opera-
tional pattern categories from Experiment 1 (i.e.,
adherence to the operational patterns on 3 measures
and adherence to the operational patterns on 0
measures).

Activation Phase

During the activation phase, participants were
presented with 24 trials in which they were shown a
target followed by a set of five stimuli. For each
stimulus, participants’ goal was to indicate whether
it matched some aspect of the target by pressing one
of two keys labeled YES and NO on the keyboard.
Each stimulus appeared on the screen until partici-
pants made their decision. In both the experimental
and control conditions, there were 8 trials of per-
ceptual pattern activation, 8 trials of concept activa-
tion, and 8 trials of strategy activation, each of which
is described here.

Perceptual pattern activation. To activate knowl-
edge of the ‘‘operations 5 answer’’ perceptual pat-
tern, participants in the experimental condition were
presented with a target equation (e.g., 3751659 5 __)
followed by five stimulus equations randomly se-
lected from a set of equations (e.g., 3751659 5 __,
981673 5 __, 12129117 5 __, 81711519 5 __).
Participants’ goal was to decide whether each of the
five stimulus equations matched the target equation.
Both the target equation and the stimulus equations
adhered to the traditional ‘‘operations 5 answer’’
problem structure. Participants in the control con-
dition were presented with nonsense letter patterns
(e.g., XxxX, Cccc, and RrXc) instead of equations.

Concept activation. To activate knowledge of the
operational concept of addition, participants in the
experimental condition were presented with a target
word (e.g., Total) followed by five stimulus words
randomly selected from a set of words (e.g., Total,

Plus, Sum, Add). Participants’ goal was to decide
whether each of the five stimulus words matched the
target word. Both the target word and the stimulus
words were chosen to activate knowledge of the
operation of addition. Participants in the control
condition were presented with neutral words (e.g.,
Party, Tea, House) instead of words designed to ac-
tivate knowledge of the operation of addition.

Strategy activation. To activate knowledge of the
operational strategy of adding numbers together,
participants in the experimental condition were
presented with a target number (e.g., 16) followed by
five addend pairs randomly selected from a set of
addend pairs (e.g., 8 and 8, 10 and 5, 2 and 6, 20 and
20). Participants’ goal was to decide whether each of
the addend pairs summed to the target number. This
task was designed to activate the strategy of adding
numbers together. Participants in the control condi-
tion were presented with colors as targets (e.g., or-
ange) and color pairs as stimulus pairs (e.g., red and
yellow, red and white) instead of numbers and ad-
dend pairs. Participants’ goal was to decide whether
the color pairs, when mixed together, yielded the
target color.

Equation-Solving Phase

Immediately following the activation phase, there
was an equation-solving phase in which participants
solved two typical addition problems (e.g.,
5171315 5 __) followed by eight equations with
operations on both sides of the equal sign (e.g.,
71415 5 71__). Before each equation was present-
ed, participants’ gaze was directed to the center of
the screen at the location where the equation would
be presented. The equations were displayed in the
center of the computer screen for a brief period
(M 5 1500 ms). Each equation was approximately 5
mm tall and 50 mm wide. After each equation was
presented, participants were instructed to write the
solution on a provided answer sheet. After recording
each answer, participants pressed a key on the key-
board to move on to the next equation.

Coding

Participants’ equation-solving strategies were
coded using the system developed by Perry et al.
(1988). Strategies were assigned based on partici-
pants’ solutions. Solutions were coded as reflecting a
particular strategy as long as they were within � 1 of
the solution that would result from that strategy. We
were interested in participants’ use of correct strat-
egies and in their use of the add-all strategy. Recall
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that the add-all strategy is commonly used by ele-
mentary school children who have not received in-
struction on equations or on the concept of
mathematical equivalence.

Results and Discussion

Participants’ performance on the two typical ad-
dition problems (e.g., 5171315 5 __) was good and
did not differ between conditions. Two participants
(one in each condition) did not use a correct strategy
on one of the two typical addition problems; all
others used a correct strategy on both typical addi-
tion problems.

Figure 4 presents a frequency plot of the number
of correct strategies used on the equations with op-
erations on both sides of the equal sign (out of 8).
Specifically, the figure displays the number of par-
ticipants who used 0 correct strategies, 1 correct
strategy, 2 correct strategies, and so on, up to 8 cor-
rect strategies. Performance on the equations was
good overall and not normally distributed, with 67%
of the participants using a correct strategy on either
seven (n 5 6) or all eight (n 5 10) equations. Given
the potential ceiling effects, a parametric analysis
was unwarranted; therefore, we categorized partici-
pants into two groups based on the natural, balanced
separation in the dataFthose who used a correct
strategy on at least seven of eight equations (n 5 16)
and those who used a correct strategy on fewer than
seven equations (n 5 8). We then used a nonpara-
metric analysis to examine the effects of operational
pattern activation.

As predicted, participants whose knowledge of
the operational patterns was activated were less
likely than participants whose knowledge was not
activated to use a correct strategy on at least seven of
eight equations, w2(1, N 5 24) 5 6.75, p 5 .009. Of the
12 participants in the control condition, 11 (92%)
used a correct strategy on at least seven of the eight
equations. Of the 12 participants in the experimental
condition, only 5 (42%) used a correct strategy on at
least seven of the eight equations. This result is
consistent with the results of Experiment 1 and
supports the predictions of the change-resistance
account. When people’s knowledge of the opera-
tional patterns is activated, they are more likely to
have difficulties with equations. The result chal-
lenges theories of mathematics learning that hold
that knowledge of arithmetic operations should fa-
cilitate performance on more complex equations. It
also challenges the intuitive hypothesis that people
who are primed with mathematical tasks will per-

form better on subsequent math problems than
people who are primed with nonmathematical tasks.
Participants in the control group performed non-
mathematical tasks and subsequently performed
better than participants in the experimental group on
mathematical equations.

The change-resistance account predicts that
equation-solving performance suffers when knowl-
edge of the operational patterns is activated because
knowledge of the operational patterns controls at-
tention, determines what gets encoded, and influ-
ences how information is interpreted. Thus, when
participants’ knowledge of the operational patterns
is activated, they should be more likely to view
equations operationally and adhere to the opera-
tional, add-all strategy (e.g., 71415 5 7123) in
solving equations. Indeed, whether participants ever
used the add-all strategy was contingent on condi-
tion, w2(1, N 5 24) 5 6.32, p 5 .01. None of the 12
participants in the control condition ever used the
add-all strategy, not even on one equation, whereas 5
of 12 participants (42%) in the experimental condi-
tion used the add-all strategy at least once. In fact, all
5 participants in the experimental condition who
used the add-all strategy used it more than once
(M 5 3.8 of 8 equations). Use of the add-all strategy
accounted for 49% of the incorrect strategies used by
participants in the experimental condition. Thus,
when undergraduates’ knowledge of the operational
patterns is activated, they tend to resemble elemen-
tary school children and solve equations by adding
all the numbers.

The results of Experiment 2 provide additional
support for the change-resistance account. Partici-
pants who had their knowledge of the three opera-
tional patterns activated did not perform well on
equations, and they were likely to err by adding all
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Figure 4. Frequency plot of the number of correct strategies used
on the equations with operations on both sides of the equal sign
(out of 8).
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the numbers. In contrast, participants who did not
have any of the three operational patterns activated
performed well on equations and were unlikely to
add all the numbers. Although these results are
consistent with the change-resistance account, two
caveats should be noted when making direct com-
parisons between Experiment 1 and Experiment 2.
First, elementary school children and undergradu-
ates differ on several dimensions, including age and
experience with math. Second, there were procedural
differences between the two experiments, including
method of presenting the equations (easel vs. com-
puter) and amount of time each equation was pre-
sented (no time restriction vs. brief presentation).
Despite these limitations, however, results of Exper-
iment 2 help build the case for the change-resistance
account by establishing a casual link between acti-
vation of the operational patterns and difficulties
solving equations.

General Discussion

The experiments presented in this article tested
whether knowledge of arithmetic operations con-
tributes to difficulties with equations. In Experiment
1, children’s adherence to three operational patterns
that commonly occur in arithmetic was negatively
associated with the likelihood of learning from a
brief lesson on equations. In Experiment 2, partici-
pants whose knowledge of the three operational
patterns was activated were less likely than partici-
pants whose knowledge was not activated to per-
form well on equations. These findings support the
change-resistance account and suggest that knowl-
edge of arithmetic operations hinders performance
on and learning of equations. We believe that these
findings have important theoretical and educational
implications, as discussed next. However, it is im-
portant to note that it would be premature to gen-
eralize the results to classroom learning, given that
many aspects of our experiments were far removed
from typical classroom settings.

The change-resistance account focuses on what
children have, and thus, places substantial weight on
the current state of the cognitive system. This differs
from accounts of children’s learning difficulties that
focus on what children lack. Accounts that focus on
what children lack generally assume that the cogni-
tive system is moving, steadily or in spurts, toward
some common adult state (Kessen, 1984). Each period
of immature development is seen as the adult state
minus something. In turn, the research strategy has
been to start with what is known about the adult state
and work backward in hopes of discovering mecha-

nisms that give rise to the adult state. This strategy
may be effective for understanding well-defined
problems in the laboratory; however, cognitive de-
velopment is not a well-defined problem. Different
processes can lead to the same end state, and the
same processes can lead to different end states. Thus,
although end states provide an inventory of poten-
tials for development, they do little to inform our
understanding of the processes that create them.

The change-resistance account argues that to un-
derstand learning and cognitive development, it may
not be necessary or even desirable to specify an end
state. Instead, development can be viewed as a suc-
cession of attempts to preserve the current state in
the face of an external impetus for change. As Kuo
(1976) eloquently argued, the study of development
is not about endpoints, but potentials. Scientists who
start with the current state in mind can hypothesize
about potential subsequent states and experimen-
tally examine conditions under which desired future
states can be achieved from the current state. The
goal of this research strategy, then, is to uncover the
mechanisms that drive the cognitive systemFboth
mechanisms of change and mechanisms of change
resistance.

One mechanism of change resistance in children’s
mathematical development may be entrenched
knowledge of operational patterns. We suggest that
knowledge of operational patterns should be most
entrenched between third and fifth grades. Before
third grade, children are just starting to learn about
arithmetic operations; therefore, their knowledge of
operational patterns is weak. Between third and fifth
grades, children continue practicing arithmetic pro-
cedures, and their knowledge of operational patterns
becomes stronger and more robust. As a result, they
inflexibly apply their knowledge of the operational
patterns and are unable to invent new strategies (i.e.,
resist change) when presented with novel equations
(cf. Hatano, 1988). This leads to the unintuitive pre-
diction, which we are currently testing, that first- and
second-grade children may be more likely than
third- through fifth-grade children to solve equations
with operations on both sides correctly. After fifth
grade, children are introduced to prealgebra; there-
fore, the operational patterns begin to lose their
predictive power, and children’s representations of
these patterns decrease in strength.

The present results contribute to the growing
body of evidence suggesting that prior knowledge
can be detrimental in some situations (Adelson, 1984;
Bruner & Postman, 1949; Flege, Frieda, & Nozawa,
1997; Gray & Fu, 2001; Knoblich et al., 1999; Kuhl,
2000; Wiley, 1998). These findings present a paradox
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because knowledge is often cited as something that
facilitates learning (Rittle-Johnson, Siegler, & Alibali,
2001), memory (Chase & Simon, 1973; Chi, 1978), and
problem solving (Larkin, 1983). Indeed, familiar pro-
verbs such as ‘‘knowledge is power’’ highlight that
people intuitively think knowledge is a good thing.
Because knowledge is typically beneficial, situations
in which knowledge hinders performanceFlike the
those described in this articleFprovide a unique
window into how the cognitive system works.

The present study also extends past research
about strategy variability as a predictor of cognitive
change. The results shed light on why some indi-
viduals with low strategy variability nevertheless
changeFnamely, because their existing strategies
are not entrenched. People may use an incorrect
strategy consistently, not because it is entrenched but
because they cannot think of any other way to solve
the problem. They may know that their existing
strategy is incorrect, but they may not have the
knowledge necessary to construct a new strategy.
Unlike people who are entrenched in a particular
strategy, these individuals may be highly receptive to
instruction. When they encounter new information,
they may readily incorporate that information into
their knowledge base and abandon their incorrect
strategy in favor of a new strategy. More broadly, the
present work highlights the need for research to
address directly the relations among variability, en-
trenchment, and learning.

Perhaps the most surprising finding of the present
research was that undergraduates could be made to
perform like elementary school children. When un-
dergraduates’ knowledge of the operational patterns
was activated in Experiment 2, some started solving
fairly straightforward equations (e.g., 71415 5

71__) by adding all the numbers. This strategy is
often used by children who have not yet received
instruction on such equations (McNeil & Alibali,
2000). We argue that this finding is a testament to the
power of early learning. Equations such as 71415 5

71__ would typically be trivial for college students,
who have years of experience with algebraic equa-
tions. Nonetheless, after just a few minutes of ex-
posure to the operational patterns that they learned
many years previously, their performance on such
equations suffered. These results are consistent with
other studies that demonstrate the power of indi-
viduals’ initial associations in a wide variety of do-
mains (e.g., infants’ spatial memory, Munakata,
McClelland, Johnson, & Siegler, 1997; Spencer, Smith,
& Thelen, 2001; children’s strategies for solving sci-
ence and mathematics problems, Schauble, 1990;
Siegler & Stern, 1998; adults learning a second lan-

guage, Best, McRoberts, & Goodell, 2001; Flege et al.,
1999; nonhuman animals’ latent inhibition and
spontaneous recovery, Bouton, Nelson, & Rosas,
1999; Tolman, 1948). Results also converge with other
studies showing that undergraduates sometimes use
less advanced strategies for solving math problems
than might be expected (e.g., Clement, Lochhead, &
Monk, 1981; LeFevre, Smith-Chant, Hiscock, Daley,
& Morris, 2003; Rosnick, 1981).

Although it is tempting to assume that the un-
derlying processes responsible for undergraduates’
difficulties in Experiment 2 are the same as the
processes responsible for children’s difficulties in
Experiment 1, one cannot be certain that this is the
case. The age- and experience-related differences
between the two participant groups, as well as the
procedural differences between the two experiments,
discourage us from making strong claims about the
similarities between the two cases. Instead, we argue
that Experiment 2 should be viewed primarily as an
existence proof that knowledge of the operational
patterns hinders performance on equations. Taken
together with the results of Experiment 1, this sug-
gests that knowledge of arithmetic operations (as
currently taught in the United States) may contribute
to difficulties with learning of and performance on
equations.

In practical terms, the present findings challenge
some traditional educational practices. In most
schools in the United States, children learn arith-
metic operations for many years before reaching al-
gebra and being formally introduced to equations
and the concept of mathematical equivalence. This
instructional strategy makes sense in the context of
accounts that attribute children’s difficulties with
equations to something that children lack. The ar-
gument is as follows: If elementary school children
lack the necessary domain-general logical structures
or working memory resources for understanding
complex equations, why should teachers waste val-
uable class time trying to teach something that chil-
dren are not ‘‘developmentally ready’’ to learn?
Instead, teachers should focus on teaching some-
thing children are capable of learningFarithmetic
operations. Similarly, if children’s difficulties with
equations are due to their lack of proficiency with
arithmetic operations, it makes sense for children to
spend years practicing arithmetic operations before
moving onto complex equations. However, this in-
structional strategy makes less sense within the
context of the change-resistance account, which ar-
gues that children’s knowledge of the operational
patterns becomes entrenched through years of
practice with arithmetic operations, and as a result,
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children’s ability to learn about more complex
equations suffers. According to this view, it would
make more sense to start teaching children about
complex equations as early as possibleFbefore
knowledge of the operational patterns becomes en-
trenched. Along these lines, many mathematics ed-
ucation researchers have argued for the ‘‘algebra-
fication’’ of elementary school mathematics (Blanton
& Kaput, 2003; Bodanskii, 1991; Carpenter et al.,
2003; Carraher, Schliemann, & Brizuela, 2001).

Although the present findings lead us to question
some educational practices that are common in the
United States, we must be cautious about our con-
clusions. It would be premature for us to conclude
that knowledge of arithmetic operations hinders the
learning of children in classroom settings. Although
the results of Experiment 1 hint in that direction, the
jury is still out. Indeed, our experiments do not rule
out the possibility that children need even more
practice with arithmetic operations before progress-
ing to algebra. It may be that the relationship be-
tween practice with arithmetic and performance on
equations is U-shaped, with an intermediate level of
arithmetic proficiency being most detrimental (cf.
Dowker, Flood, Griffiths, Harriss, & Hook, 1996). We
argue that third- through fifth-grade children de-
velop routine expertise with arithmetic operations,
and this leads them to apply their knowledge of
operational patterns inflexibly (cf. Hatano, 1988).
With even more practice, however, children may
eventually develop adaptive expertise and exhibit
the creativity and flexibility of true experts (Dowker,
1992; Hatano, 1988). We are currently investigating
the causal link between knowledge of arithmetic
operations and mathematics learning difficulties in
classroom settings.

We contend that change resistance extends beyond
the domain of mathematics. Indeed, it may be a
fundamental characteristic of the cognitive system. It
is manifested in a wide variety of domains, including
science (Schauble, 1990) and foreign language (Kuhl,
2000). Thus, any general theory of learning and cog-
nitive development needs to address not only mech-
anisms of change but also mechanisms of change
resistance.
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