One-Way Between-Subject Design Example Fisher-Hayter Post Hoc

Handout #12, p. 3 Psych 610 Prof. Moore

Data Table:		# of Confederates				
Data Table.		1	2	3	4	5
		0 1 0 1 1	0 2 1 2 0	3 4 3 2 4	4 4 5 6 5	8 9 7 6 8
	$ \begin{aligned} & \Sigma Y \\ & \Sigma Y^2 \\ & \bar{Y} \end{aligned} $	3 3 .6	5 9 1	16 54 3.2	24 48 4.8	38 294 7.6

 $[T] = 86^{2}/25 = 295.84$ [A] = $(3^{2} + 5^{2} + 16^{2} + 24^{2} + 38^{2})/5 = 462$ [Y] = 478

	Source	df	SS	MS	F	Table F
$H_0: \mu = 0$ $H_A: \mu \neq 0$	Mean	1	[T] = 295.84	295.84	369.8	(1,20) = 4.35
$H_0: \alpha_j = 0$ for all j	А	(a-1)=4	[A] - [T] = 166.16	41.54	51.925	(4,20) = 2.8
$H_A: \alpha_j \neq 0$ for some j	S/A	a(n-1)=20	[Y] - [A] = 16	.8		
	Total	a _n = 25	[Y] = 478			

Does compliance increase as number of confederates increases??

Test linear trend:

Test Residual:

 $SS_{residual} = 166.16 - 158.42 = 7.74$

 $F_{residual} = 9.675$ (compare to F(1, 20) = 4.85)

Significant, so . . .

Test Quadratic:

 $\hat{\Psi}_{quad} = 4.2$ SS_{quad} = 6.3

 $F_{quad} = 7.88$ (compare to F(1, 20) = 4.35)

H₀: $\psi = 0$ is rejected

Test Residual

 $SS_{residual} = 7.74 - 6.3 = 1.44$

 $F_{residual} = 1.8$ (compare to F(1, 20) = 4.35)

n.s., so stop trend analysis

How much variance does each trend account for?

Linear: 158.42/166.16 = 95% Quadratic: 6.3/166.16 = 3.8%

Which increases in number of confederates matter?

Planned comparison: critical $\overline{d} = 1.18$

Fisher-Hayter:
$$\overline{d} = \frac{3.96 \sqrt{2(8)}}{\sqrt{5}} = 2.24$$

1 2 3 4 5
1 -- .4 2.6 4.2 7.0
2 -- 2.2 3.8 6.6
3 -- 1.6 4.4
4 -- 2.8
5 -- -- -- -- -- -- --

From the table of mean differences at the left, we can see that all pairs of means differ significantly except 1 vs. 2, 2 vs. 3, and 3 vs. 4 confederates.