Handout #14

GENERAL LINEAR -- Two Way ANOVA

Score model:

Let Y_{ijk} be the ith subject in cell AB_{jk}

(Note: $\alpha\beta_{jk} = \overline{Y}_{jk} - \alpha_j - \beta_k - \mu$, what is systematic in the cell mean after lower order effects are subtracted from it.)

BREAKDOWN OF GRAND TOTAL OF SUM OF SQUARED SCORES

BREAKDOWN OF DEGREES OF FREEDOM

total observations = abn

$$abn = 1 + (a - 1) + (b - 1) + (a - 1)(b - 1) + a(n - 1)$$

df mean df for A df for B df for A x B df for S/AB

SSS

TWO-WAY FIXED FACTOR BETWEEN-S DESIGNS Expected Values of the Mean Squares

$E[SS_M] = \sigma_e^2 + abn\mu^2$	
$E[SS_A] = (a - 1)(\sigma_e^2 + nb\theta_A^2)$	$E[SS_{AB}] = (a-1)(b-1)(\sigma_e^2 + n\theta_{AB}^2)$
$E[SS_B] = (b-1)(\sigma_e^2 + na\theta_B^2)$	
$E[SS_{S/AB}] = ab(n-1) \sigma_e^2$	
In general: $MS = SS/df$	
$E[MS_M] = \sigma_e^2 + abn\mu^2$	$E[MS_B] = \sigma_e^2 + na\theta_B^2$
$E[MS_A] = \sigma_e^2 + nb\theta_A^2$	$E[MS_{AB}] = \sigma_e^2 + n\theta_{AB}^2$
$E[MS_{S/AB}] = \sigma_e^2$	

Note: θ^2 is used for the variance of fixed factors

 σ^2 is used for the variance of random factors; subjects is a random factor.

$$F_{A} = MS_{A}/MS_{S/A}$$
 $E[F[H_{0}true] = df_{error} / df_{error}^{-2} = \frac{a(n-1)}{a(n-1)-2}$

 ~ 1 as df_{error} get large