Nested Designs With and Without Random Factors

I. Two-way design

Factor B is nested in A if the levels of B are not comparable across the levels of A. For this design B is nested in A, and participants are nested in treatment cells.

	A_1						A_2						
	B1	B2	В3	B4	B5	В6	В7	В8	В9	B10	B11	B12	
	6	2	5	4	6	1	8	1	9	7	9	5	
	8	3	6	3	7	3	6	3	7	4	6	5	
	4	5	3	2	8	5	7	3	8	6	8	7	
AB_{jk}	18	10	14	9	21	9	21	7	24	17	23	17	T=190

$$A_1 = 81$$
 $A_2 = 109$ $\overline{Y}_{A1} = 4.50$ $\overline{Y}_{A2} = 6.06$ $[Y] = 437$

Linear model for nested design:

$$Y_{ijk} = \mu + \alpha_j + \beta_{k(j)} + \epsilon_{ijk}, \ \ where \ \alpha_j = \mu_j \text{ - } \mu, \ \ \beta_{k(j)} = \mu_{jk} \text{- } \mu_j$$

Side conditions for a fixed factor: $\Sigma \alpha_j = 0$

Side conditions for a random factor: $\beta_{k(j)} \sim N(0, \sigma^2_{B/A})$

B assumed <u>random</u>. A is fixed.

Source Source	<u>df</u>	<u>SS</u>	<u>MS</u>	<u>F</u>
Mean	1	1002.78	1002.7	93.37
A	a - 1 = 1	21.78	21.78	2.03
B/A	a(b - 1) = 10	107.45	10.74	5.37*
S/AB	ab(n - 1) = 24	48.00	2.00	

^{*}p<.01

- Relate to simple main effects!Compare analyses with different designs and assumptions!

Expected mean squares

	B random and nested	B fixed and nested
Mean	$abn\mu^2 + n\sigma^2_{~B/A} + \sigma^2_{~e}$	$abn\mu^2 + \sigma_e^2$
A	$bn\theta^2_A + n\sigma^2_{B/A} + \sigma^2_e$	$bn\theta^2_A + \sigma^2_e$
B/A	$n\sigma^2_{\rm B/A} + \sigma_{\rm e}^{\ 2}$	$n\theta^2_{B/A} + \sigma^2_e$
S/AB	σ_{e}^{2}	$\sigma_{\rm e}^2$

A x B factorial (crossed) design

	B fixed	<u>B random</u>
Mean	$abn\mu^2 + \sigma_e^2$	$abn\mu^2 + n\sigma^2_{AB} + \sigma^2_{e}$
A	$bn\theta^2_A + \sigma\gamma_e$	$bn\theta_A^2 + n\sigma^2_{AB} + \sigma^2_{e}$
В	$an\theta^2_B + \sigma^2_e$	$an\sigma_{B}^{2} + \sigma_{e}^{2}$
A x B	$n\theta^2_{AB} + \sigma^2_{e}$	$n\sigma^2_{AB} + \sigma^2_{e}$
S/AB	σ_{e}^{2}	$\sigma^2_{ m e}$

II. A 3-way nested design

$$\begin{split} & \text{Linear model:} \quad Y_{ijkl} = \mu + \, \alpha_j + \beta_k + \gamma_{l(k)} + \alpha \beta_{jk} + \alpha \gamma_{jl(k)} + \epsilon_{ijkl}, \\ & \text{Side conditions:} \quad \Sigma \alpha_j = 0 \,\,, \\ & \Sigma \beta_j = 0 \,\,\, (\text{factors A and B fixed}), \quad \gamma_{\,l(k)} \sim N(0,\, {\sigma_{_{\! \gamma}}}^2) \,\, (\text{factor C random}) \end{split}$$

where $\alpha_j = \mu_j$ - μ , $\beta_k = \mu_k$ - μ , $\gamma_{l(k)} = \mu_{kl}$ - μ_k , etc.

			Sentence Stem								
		C	Person			Man			Woman		
	Male	Ex1	6	8	4	2	3	5	10	11	7
		Ex2	5	6	3	4	3	2	9	8	9
		Ex3	6	7	5	1	3	5	7	11	9
B (Role		Ex4	8	5	7	5	6	3	7	6	10
Gender)	Female	Ex5	8	9	7	11	12	8	3	4	6
		Ex6	6	7	4	8	9	11	5	4	3
		Ex7	7	8	6	8	12	10	2	3	6
		Ex8	9	6	8	8	7	11	5	7	4

<u>Source</u>	<u>df</u>	<u>SS</u>	<u>MS</u>	<u>F</u>	Error
Mean	1	3042.0	3042.0	1579.44	C/B
A(Stem)	a - 1 = 2	.083	.042	.021	AxC/B
B(Stem)	b - 1 = 1	18.0	18.0	9.346	C/B
A x B	(a-1)(b-1) = 2	326.083	163.042	80.59	AxC/B
C/B	b(c - 1) = 6	11.556	1.926	.72	S/ABC
C/BxA	b(c-1)(a-1) = 12	24.278	2.023	.759	S/ABC
S/ABC	abc(n - 1) = 48	128.0	2.667		

Expected Mean Squares - Assuming C random, A and B fixed

Mean
$$abcn\mu^2 + an\sigma^2_{C/B} + \sigma_e^2$$

A
$$bcn\theta^2_A + n\sigma^2_{C/BxA} + \sigma_e^2$$

$$B \qquad \qquad acn\theta^{2}_{B} + an\sigma^{2}_{C/B} + \sigma_{e}^{2}$$

A x B
$$cn\theta^{2}_{AxB} + n\sigma^{2}_{C/BxA} + \sigma_{e}^{2}$$

$$C/B$$
 an $\sigma^2_{C/B} + \sigma_e^2$

$$C/BxA$$
 $n\sigma^2_{C/BxA} + \sigma_e^2$

S/ABC
$$\sigma_e^2$$

General Principle:

- -- When a random factor is crossed with a fixed factor, the EMS for the fixed factor includes the interaction of the random factor with itself, and so that interaction becomes the error term for testing the fixed factor.
- -- When a random factor is nested in a fixed factor, the EMS for the fixed factor includes the nested factor, and so the nested factor becomes the error term for testing the fixed factor.