Psychology 610 Prof. Moore

Options for Analyzing a One-Way Within-Subject Design with Replications

Assume 5 levels of factor A, 3 participants who complete 4 replications of each of the 5 levels of factor A (20 observations per participant; 60 observations in the whole experiment).

A. Average each participant=s responses within treatment condition. Now we have 5 observations per person, one for each level of factor A. It is now analyzed as a regular one-way within-subject design.

Subjects is random; A is fixed.

Source	<u>df</u>	<u>E(MS)</u>
Mean	1	${\sigma_e}^2 + a{\sigma_S}^2 + an\mu^2$
Subjects	n - 1 = 2	$\sigma_e^2 + a\sigma_S^2$
А	a - 1 = 4	${\sigma_e}^2 + {\sigma_{SxA}}^2 + n{\theta_A}^2$
A x S	8	$\sigma_e{}^2 + \sigma_{SxA}{}^2$

Linear model:

 $Y_{ij} = \mu + \alpha_j + \pi_i + \alpha \pi_{ij} + \epsilon_{ij}$

 ϵ_{ij} can't be separated from $\alpha \pi_{ij}$

B. Consider replications to be random and nested in Subject x A combinations. Subjects is also random.

Source	<u>df</u>	<u>E(MS)</u>
Mean	1	${\sigma_e}^2 + ar{\sigma_S}^2 + anr\mu^2$
Subjects	n - 1 = 2	$\sigma_e^2 + ar\sigma_S^2$
А	a - 1 = 4	$\sigma_e{}^2 + r\sigma_{AxS}{}^2 + rn\theta_A{}^2$
A x S	(a-1)(n-1) = 8	$\sigma_e^2 + r\sigma_{AxS}^2$
Reps/AS	an(r - 1) = 45	$\sigma_e^{\ 2}$

B'. Replications is random and nested in S x A combinations, but subjects is fixed.

Source	<u>df</u>	<u>E(MS)</u>
Mean	1	$\sigma_e^2 + anr\mu^2$
Subjects	n - 1	$\sigma_e^2 + ar\theta_S^2$
А	a - 1	$\sigma_e^2 + nr\theta_A^2$
A x S	(a-1)(n-1)	${\sigma_e}^2 + r \theta_{AxS}{}^2$
R/AS	an(r - 1)	σ_e^2

C. Consider replications to be a fixed factor crossed with other factors. Subjects is random. This analysis allows Reps to be tested.

Source	<u>df</u>	<u>E(MS)</u>
Mean	1	${\sigma_e}^2 + ar{\sigma_S}^2 + anr\mu^2$
Subjects	n - 1	$\sigma_e^2 + ar\sigma_S^2$
А	a - 1	${\sigma_e}^2 + r{\sigma_{AxS}}^2 + ar{\theta_A}^2$
A x S	(a-1)(n-1)	$\sigma_e^2 + r\sigma_{AxS}^2$
Reps	r - 1	${\sigma_e}^2 + a{\sigma_{RxS}}^2 + an{\theta_R}^2$
R x S	(r-1)(n-1)	$\sigma_e^2 + a\sigma_{RxS}^2$
A x R	(a-1)(r-1)	${\sigma_e}^2 + {\sigma_{AxRxS}}^2 + n \theta_{AxR}^2$
A x R x S	(a-1)(r-1)(n-1)	$\sigma_e^2 + \sigma_{AxRxS}^2$

D. Analyze the data of each subject in a separate ANOVA. Replications is a random factor in each analysis, nested in treatment. This allows the effect of factor A to be tested for each individual.

Source	<u>df</u>	<u>E(MS)</u>
Mean	1	$\sigma_e^2 + ar\mu^2$
А	a - 1	$\sigma_e^2 + r\theta_A^2$
Reps/A	a(r - 1)	$\sigma_{e}{}^{2}$

Handout #26, p. 3

Source	<u>df</u>	<u>E(MS)</u>
Mean	1	${\sigma_e}^2 + a{\sigma_R}^2 + ar\mu^2$
Reps	r - 1	$\sigma_e^2 + a \sigma_R^2$
А	a - 1	${\sigma_e}^2 + {\sigma_{AxR}}^2 + r \theta_A{}^2$
A x R	(a-1)(r-1)	$\sigma_e{}^2 + \sigma_{AxR}{}^2$

D'. Individual subject ANOVAs; Replications is random and crossed with factor A (factor A is fixed).

Comments:

- A. In this approach, reps are not of interest. By averaging reps together for each subject, the scores to be analyzed will have more stability. Variance due to replications is averaged away.
- B. & B'. In these approaches, reps is also not of interest, but it becomes the error term for at least one test. The interaction of treatment (A) with Subjects can be tested. Subjects can also be tested. A question for BN is when it might be legitimate to consider subjects to be a fixed factor.
- C. In this approach, reps is a factor that the investigator is interested in testing, along with its interaction with the treatment effect.
- D. & D'. In these approaches the focus is on individual differences in the effect of factor A. Do some subjects show a treatment effect whereas others do not? There is a design issue in considering reps to be nested vs. crossed. Nested would be implied by a totally random order of the ar trials of the experiment. Crossed seems to be implied by a design in which all of the a trials of the first replication are completed before the second replication, etc. What are the implications of crossed versus nested for statistical power?

Data averaged ove	r reps.	Reps. nested within	n SOLA	Reps. treated as facto	or	Single subject ana	lysis
Source	df	Source	df	Source	df	Source	d
Mean	1	Mean	1	Mean	1	Mean	1
<u>S</u> ubjects	15	<u>S</u> ubjects	15	<u>S</u> ubjects	15	<u>Orientation</u>	1
Orientations	1	Orientations	1	Orientations	1	<u>L</u> ength	1
SxO	15	SxO	15	SxO	15	<u>A</u> ngle	4
<u>L</u> ength	1	<u>L</u> ength	1	<u>L</u> ength	1	OxL	1
ŠxL	15	ŠxL	15	SxL	15	OxA	4
<u>A</u> ngle	4	<u>A</u> ngle	4	<u>A</u> ngle	4	LxA	4
SxA	60	SxA	60	SxA	60	OxLxA	4
OxL	1	OxL	1	OxL	1	Reps/OLA	<u>8</u>
SxOxL	15	SxOxL	15	SxOxL	15	_	1
OxA	4	OxA	4	OxA	4		
SxOxA	60	SxOxA	60	SxOxA	60	Cells for systemat	ic
LxA	4	LxA	4	OxT	4	sources $= 20$	
SxLxA	60	SxLxA	60	SxOxT	60		
OxLxA	4	OxLxA	4	LxA	4	5 reps per cell = 1	00 obs.
SxOxLxA	<u>60</u>	SxOxLxA	60	SxLxA	60		
	320	Reps/SOLA	<u>1280</u>	LxT	4		
			1600	SxLxT	60		
Cells for systemati	с			AxT	16		
sources $= 2$ orienta	ations	Cells for systemati	c	SxAxT	240		
x 2 lengths x 5 ang	gles = 20	sources $= 20$		OxLxA	4		
		20 cells x 5 trials =	= 100 per S	SxOxLxA	60		
20 scores per S x 1	6 S =	100 scores per S x	16 S =	OxLxT	4		
320 obs.		1600 obs.		SxOxLxT	60		
				OxAxT	16		
		Reps is random		SxOxAxT	240		
		S is random		LxAxT	16		
				SxLxAxT	240		
				OxLxAxT	16		
				SxOxLxAxT	<u>240</u>		

Four Alternatives for Analyzing Massaro and Anderson design (American Journal of Psychology, 1970)

Cells for systematic sources = 20×5 trials = 100100 scores per S x 16 S = obs.