Handout #20

Psych 610 Prof. Moore

Partitions as Sets of Contrasts

A standard anova of a two-way design is really a partition that can be expressed as a set of orthogonal contrasts. Subsets of the SS for the contrasts are summed to form the SS for the two main effects and interaction in score in 3×3 design.

		A_1		A_2			A_3				
	$\overline{B_1}$	B ₂	B ₃	$\overline{B_1}$	B ₂	B ₃	$\overline{B_1}$	B ₂	B ₃	Cont	trast #
Main Effect A	2 0	2 0	2 0	-1 1	-1 1	-1 1	-1 -1	-1 -1	-1 -1	1 2	Standard Partition
Main Effect B	2 0	-1 1	-1 -1	2 0	-1 1	-1 -1	2 0	-1 1	-1 -1	3 4	
A x B	4 0 0 0	-2 0 2 0	-2 0 -2 0	-2 2 0 0	1 -1 -1 1	1 -1 1 -1	-2 -2 0 0	1 1 -1 -1	1 1 1 1	5 6 7 8	
$B @ A_1$	2 0	-1 1	-1 -1	0 0	0 0	0 0	0 0	0 0	0 0	1' 2'	
B @ A ₂	0 0	0 0	0 0	2 0	-1 1	-1 -1	0 0	0 0	0 0	3' 4'	
B @ A ₃	$\begin{array}{c} 0 \\ 0 \end{array}$	$\begin{array}{c} 0 \\ 0 \end{array}$	0 0	0 0	0 0	0 0	2 0	-1 1	-1 -1	5' 6'	

The simple main effects of B @ each level of A are given as contrasts in the bottom portion of the table. Because there are 6 contrasts, they use 6 df.

Notice that the contrasts in the top can be expressed as linear functions of the contrasts in the bottom, and vice versa.

Example: #3 = 1' + 3' + 5' #5 = 2(1') + (-1)(3') + (-1)(5') #1' = (#3) + (-1)(#6)#6' = [(2)(#4) - (#7) - (#8)]

Main Effect A contrasts are orthogonal to #s 1'-6'.