Psych 610 Prof. Moore

Derivation of coefficients for Trend Analysis

(1)
$$\mu_i = \beta_1(a_1 + X_j) + \beta_2(a_2 + b_2X_j + X_j^2) + \beta_3(a_3 + b_3X_j + c_3X_j^2 + X_j^3) + \text{etc.}$$

-- Assume an experiment with 4 age groups – 8, 9, 10, and 11-year-olds. We want to do trend analysis on Age. So the ages are used as the values of X.

For linear: $c_i = a_1 + X_i$ (from Eq. 1). Plug in the age as X_i :

 $c_{1} = a_{1} + 8 \qquad c_{1} = -9.5 + 8 = -1.5$ Add $c_{2} = a_{1} + 9 \qquad c_{2} = -9.5 + 9 = -.5$ $c_{3} = a_{1} + 10 \qquad c_{3} = -9.5 + 10 = .5$ $c_{4} = a_{1} + 11 \qquad c_{4} = -9.5 + 11 = 1.5$ $\overline{\sum c_{j} = 4a_{1} + 38}$ $0 = 4a_{1} + 38; \text{ because } \sum c_{j} = 0$ $-38 = 4a_{1}$ $a_{1} = -9.5 \text{ Now plug in } -9.5 \text{ for } a_{1}$

- -- So, coefficients for linear are -1.5, -.5, .5, 1.5. If we multiply by 2, we get the values from Keppel Table A -4, -3, -1, 1, 3.
- -- Next we want to find the coefficients for quadratic trend. We want these coefficients to be orthogonal to the linear coefficients.

For quadratic: $c_j = a_2 + b_2 X_j + X_j^2$ (from Eq. 1). Plug in the age as X_j :

Add these	$c_1 = a_2 + (b_2)(8) + 8^2$ $c_2 = a_2 + (b_2)(9) + 9^2$ $c_3 = a_2 + (b_2)(10) + 10^2$ $c_4 = a_2 + (b_2)(11) + 11^2$	$c_1 = 89 + (-19)(8) + 64 = 1$ $c_2 = 89 + (-19)(9) + 81 = -1$ $c_3 = 89 + (-19)(10) + 100 = -1$ $c_4 = 89 + (-19)(11) + 121 = 1$
	$\overline{\sum c_j = 4a_2 + 38b_2 + 366}$	

Now apply orthogonality constraint. $\sum c_i c_i' = 0$.

So we multiply linear c_i by the quad c_i :

	(linear c _j)	$(quad c_j)$
	(-3)	$(a_2 + 8b_2 + 64)$
Add	(-1)	$(a_2 + 9b_2 + 81)$
these	(1)	$(a_2 + 10b_2 + 100)$
	(3)	$(a_2 + 11b_2 + 121)$

 $\sum c_i c_i' = 0a_2 + 10b_2 + 190$

-- Now we have 2 equations in 2 unknowns:

(2)
$$0 = 4a_2 + 38b_2 + 366$$

 $0 = 0a_2 + 10b_2 + 190$; or, $b_2 = -19$

Put $b_2 = -19$ into Eq. 2: $0 = 4a_2 + (38)(-19) + 366$

 $a_2 = 89$

- -- Now plug $a_2 = 89$ and $b_2 = -19$ into quadratic expressions above and calculate c_i for quad. This yields the values in Keppel's table.
- -- This method works for <u>unevenly</u> spaced independent variables but will yield different c_i from those in the table in Keppel, of course.