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The relationship between intuitive and numerical proportional reasoning was ex- 
amined using a temperature-mixing task with fifth graders, eighth graders, and 
college students. In the intuitive task the temperatures and quantities were de- 
scribed verbally, whereas in the numerical task, numbers were used and subjects 
were instructed to try to use math. Half the subjects were given the intuitive 
version first, and half were given the numerical version first. To the extent that 
subjects are capable of using their intuitive knowledge to direct their numerical 
performance, performing the intuitive version first should make intuitive knowl- 
edge more salient and improve performance on the numerical task. Performance 
in the numerical condition depended on the task-order manipulation, but perfor- 
mance in the intuitive condition was almost the same in the two task orders. Five 
components were used to generate a profile representing each person’s perfor- 
mance on each task version. Subjects were grouped according to the degree of 
similarity of their component profiles to several hypothesized, qualitatively differ- 
ent prototype patterns. This “fuzzy set” analysis showed that the frequencies of 
subjects showing different patterns varied across versions of the task and were age 
related. Performing the intuitive version first decreased the likelihood that numer- 
ical temperature would be treated as an extensive rather than an intensive quan- 
tity. A theoretical framework is outlined for the relationship between intuitive and 
numerical task performance. 

Proportional reasoning is a pervasive activity that transcends topical barriers in 
adult life. We use proportions while evaluating such variables as speed, fairness, 
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quantity, and probability. One interesting feature of many judgments which in- 
volve proportional reasoning is the absence of a precise numerical scale. When a 
numerical scale is unavailable, everyday knowledge of the task domain is used to 
make intuitive judgments. It is only in a mathematical context, with a fixed scale 
and objectively correct result, that the use of proportions to solve problems is 
formalized. Inhelder and Piaget (1958) made a distinction between qualitative 
and quantitative proportions, and proposed that a qualitative grasp of propor- 
tions precedes the ability to manipulate numerical proportions. However, there 
has been almost no research exploring the relationship, if any, between numer- 
ical proportional reasoning, which involves explicit calculations, and qualitative 
or intuitive proportional reasoning, which involves estimation and everyday 
knowledge. 

We use the term “intuitive” not in the Piagetian sense, but rather in the same 
way as Brunswik (1956) and others used it (Hammond, 1982; Hammond, 
Harnrn, Grassi, & Pearson, 1987; Kahneman & ‘Iversky, 1982) to characterize 
human judgment that is based either on information for which a numerical scale 
is unavailable, or when a judgment is reached by informal processes without 
explicit calculation. Thus, intuitive proportional reasoning occurs without actual 
calculation. Inhelder and Piaget’s (1958) term “qualitative proportions” is sim- 
ilar to our use of the term intuitive proportion. We prefer the term intuitive 
because it is widely used in the judgment and decision-making field. Quantitative 
or numerical proportions, on the other hand, are formalized and analytical and 
involve explicit computations. Explicit numerical calculations belong to the cate- 
gory of cognition that Brunswik (1956) referred to as “analytic.” Thus, our 
approach follows the distinction between intuitive and numerical cognition that 
was made by Brunswik, and further developed by Hammond (1982; Hammond et 
al., 1987). 

Given Inhelder and Piaget’s influence on the study of the development of 
proportional reasoning, it is surprising that a central problem which exists in the 
literature is a failure to distinguish between tasks that require intuitive versus 
numerical proportional reasoning skills (Strauss 8z Bichler, 1988; Surber & 
Haines, 1987). For example, Siegler and Vago (1978) used the terms “calculat- 
ing volumes,” “ compute nonmetrically” and “implicit multiplication*’ when 
referring to how subjects made intuitive judgments of a proportional concept- 
relative fullness-in the absence of numerical information. These terms reflect 
Siegler and Vago’s effort to express the type of judgments Brunswik charac- 
terized as intuitive (and which Inhelder and Piaget termed “qualitative” propor- 
tional reasoning) and to distinguish that process from proportional reasoning 
involving explicit numerical calculation. 

The failure to distinguish intuitive and numerical proportional reasoning in 
much of the literature has resulted in inconsistent and confusing experimental 
results. Numerical proportional reasoning is possible only when numerical val- 
ues are given, or when it is possible for the subject to infer numerical values and 
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then use them to solve the task. Some studies of proportional reasoning have 
provided stimuli with numerical values, whereas in other studies, the stimuli 
were neither accompanied by numbers, nor easy to quantify explicitly (Chap- 
man, 1975; Goldberg, 1966; Martorano, 1977; Noelting, 1980a, 1980b). When 
comparisons of proportional reasoning have been made across different task 
domains, the use of numerically valued or easily quantifiable stimuli is often 
confounded with task domain (Bat-t & Mertens, 1979; Martorano, 1977; Siegler, 
1981). 

Our study explored the relationship between intuitive and numerical propor- 
tional reasoning for problem isomorphs of a temperature-mixture task. Subjects 
were asked to predict the temperature of a container of water produced by 
combining two separate containers at different temperatures. The same problems 
were presented in two ways. In the numerical condition the use of quantitative or 
numerical proportions was encouraged by the presence of numerical values for 
temperatures and quantities and instructions to use math. In the intuitive condi- 
tion, the temperatures and quantities were presented pictorially and accompanied 
by verbal descriptions. Numbers were not provided, thereby reducing the like- 
lihood of explicit calculation in the intuitive condition (Hammond et al., 1987). 

We manipulated the presentation order of the intuitive and numerical versions 
of the task in order to explore the ability of subjects to use their intuitive 
understanding to guide their numerical solutions. In past research it has been 
reported that when a temperature-mixture task was presented numerically and 
computation was encouraged, even some eighth graders produced answers that 
treated temperature as if it were an extensive rather than an intensive quantity’ 
(Moore, Dixon, & Haines, 1991; Strauss & Stavy, 1982). Such counterintuitive 
answers were frequently based on adding the numerical values of the tem- 
peratures. If the treatment of temperature as an extensive quantity was due to the 
subjects’ failure to use their intuitive understanding to guide their numerical 
solutions, then presenting the intuitive version of the task first would be expected 
to decrease the use of numerical strategies, which treat temperature as extensive. 
Experiencing the intuitive version of the task first should increase the memory 
availability of subjects’ intuitive knowledge, which in turn, should make avail- 
able the intensive nature of temperature. An alternative possibility is that children 
have difftculty using their intuitive understanding to guide their numerical solu- 
tions, even when they are aware of the need to do so. Perhaps children do attempt 
to use their intuitive understanding, but fail in coordinating the two types of 
knowledge. If this is the case, then the order of presentation of the two versions 

1 Piaget (1941/ 1965) described intensive quantities as those which are “not susceptible of actual 
addition” (p. 244). in contrast with extensive quantities such as mass for which the combined result 
of two quantities is the sum. See Sh-auss and Stavy (1982) for an interesting analysis of the develop- 

ment of intensive quantities. 
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of the task would not be expected to influence performance in the numerical 
version of the task. 

It is also possible that only those subjects with very poor intuitive understand- 
ing of the task will treat temperature as an extensive quantity in the numerical 
task. Unfortunately, previous studies have not assessed intuitive task understand- 
ing for the same subjects who perform the numerical task. An innovative aspect 
of our research is that we measured intuitive understanding using recently devel- 
oped methods (Moore et al., 1991). In this study each subject performed the task 
in both the intuitive and numerical versions, allowing a direct test of the role of 
intuitive understanding in determining numerical task performance. 

Components of Understanding 
Rather than measuring performance globally, we scored the degree to which each 
person’s pattern of responses showed understanding of several different compo- 
nents of the temperature-mixture task (Moore et al., 199 1; Reed & Evans, 1987; 
Surber, 1980, 1984). We chose five components that were previously used by 
Moore et al. (1991) and are similar to those of Reed and Evans (1987). The 
components are listed in the Appendix and are best explained with reference to 
the specific design of this study. For each version of the task, the subject was 
presented with trials generated by a 2 X 4 X 3 (Standard Temperature X Added 
Temperature X Added Quantity) analysis of variance (ANOVA). The subject was 
asked to predict the temperature of the “standard” container after the contents of 
another container of water had been added to it. Figure 1 shows the pattern of 
correct answers for the trials. The correct equation for solving the temperature 
task is a weighted average: T, = (QsTs + QATA)/(Qs + QA), where T, is the 
final temperature, Qs and T, are the quantity and temperature of the standard, 
and QA and T, are the quantity and temperature of the water added to the 
standard. 

The components were scored by examining the ordinal features of each sub- 
ject’s pattern of responses. For example, in order to score the main effect compo- 
nent, the subject’s temperature judgments for the added temperature values of 
20” and 80” were compared for each quantity. If the subject’s answer for the 80” 
trial was higher than for the 20” trial, a point was added to the component 
score. Because there are 3 quantity values for each standard, the maximum raw 
score for the main effect component was 6. The other components were scored 
analogously as described in the Appendix. Higher component scores represent 
response patterns that conform more closely to the correct answers shown in 
Figure 1. 

Several features of the components are noteworthy. First, some of them are 
selected to measure the same general concept at a coarse- versus fine-grained 
level. The main effect and monotonicity components measure the understanding 
that the higher the added temperature, the higher the resulting temperature. The 
main effect component is coarse grained, whereas the monotonicity component is 
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fine grained. The above-below and range components also form a coarse- and 
fine-grained pair. We selected components in this way because it is possible that 
initial understanding would be detected by the coarse-grained component, 
whereas developmental refinements in understanding might be detected only by a 
more fine-grained variable.2 

Second, although some of the components are similar to effects that can be 
extracted from data patterns using ANOVA (e.g., crossover is essentially an 
ordinal index of the interaction of quantity and temperature, and main effect is an 
ordinal index of the main effect of added temperature), the components-of- 
understanding approach allows analysis of individual data patterns that are ob- 
scured in group analyses. In the functional measurement approach, the data 
patterns of individuals are sometimes analyzed using ANOVA, and the results are 
used to classify individuals as using various rules for making judgments in a task 
(Anderson & Cuneo, 1978a; Kun, Parsons, & Ruble, 1974; Lopes, 1976). This 
approach has been criticized in developmental research because of limits on 
statistical power (Bogartz, 1978), although there is debate about the power issue 
(Anderson & Cuneo, 1978b; Gigerenzer & Richter, 1990). Another problem in 
developmental research is that the attentional capacities of the subjects may be 
exhausted before more than one or two replications of the design can be col- 
lected. The components of understanding provide a nonstatistical approach to the 
analysis of individual data patterns. 

Using the components of understanding, the manipulation of task order can be 
predicted to influence some components more than others. If numerical perfor- 
mance, which treats temperature as an extensive quantity, results from a failure to 
use intuitive knowledge, then task order should influence the above-below and 
range component scores from the numerical task. For example, if a subject adds 
numerical temperature values (therefore treating temperature as extensive), then 
the above-below and range component scores will be poor because the subject’s 
answers will all be above the standard and out of range. If subjects are less likely 
to add numerical temperatures after experiencing the intuitive version of the task, 
then the range and above-below scores should be higher in the intuitive-first than 
in the numerical-first order on the numerical version of the task. In contrast, the 
main effect and monotonicity component scores should not be affected by a 
decrease in the likelihood of treating temperature as an extensive quantity be- 
cause adding temperatures produces response patterns that will have high main- 
effect and monotonicity scores. 

2 The scores on the coarse- and fine-grained pairs of components am related hierarchically. A 
person’s above-below score must always be greater than or equal to the range score. The relation 
between main effect and monotonicity is more complex. When the main effect score is perfect, 
monotonicity must be at least 33% of maximum. One implication of the component stmcture is that 
some component score patterns am impossible. For example, it would be impossible to have a pattern 
that would have maximum scores on all components except main effect. 
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Fuzzy Set Approach 
In most developmental studies, age-group means are used to make inferences 
about developmental trends. Group means can mask important individual dif- 
ferences, and can even present a distorted picture of the performance of indi- 
viduals (Surber, 1980; Wohlwill, 1973). Moore et al. (1991) introduced a new 
approach, based on Zadeh’s ( 1965) fuzzy set theory, for analyzing both develop- 
mental sequences and individual differences. In the fuzzy set approach subjects 
are grouped according to the similarity of their component profiles to prototype 
component patterns representing different hypothesized developmental land- 
marks, or “fuzzy developmental levels.” The fuzzy developmental levels are 
essentially categories with fuzzy boundaries (Oden, 1977; Smith & Medin, 
1981). The prototypes define the perfect member of each fuzzy developmental 
level. Degree of membership in a “fuzzy developmental level” is regarded as 
continuous and is measured by the similarity of a person’s profile to the prototype 
for that developmental level. A subject can be classified as “in” that fuzzy 
developmental level for which the degree of membership is highest, but the 
degree of membership allows for individual differences within developmen- 
tal levels. Degree of membership also allows a subject to be characterized 
as a member of two or more levels to some extent, as proposed by Flavell 
(1971). 

The fuzzy set approach is similar to Siegler’s (1976) rule-assessment method 
in which each subject’s pattern of responses is used to diagnose the subject’s 
strategy for a task. It is interesting that in a preliminary report using the rule- 
assessment method, the rules were referred to as task-specific developmental 
“stages” (Siegler & Simon, 1975). The fuzzy set approach also uses response 
patterns to classify subjects and the classification is task specific. A difference 
between the approaches is that the fuzzy set approach provides additional infor- 
mation about the degree to which the subjects lit the categories to which they 
were assigned. 

In this study, the fuzzy set approach was used as a way of testing the effects of 
task order at the individual level. We selected the six fuzzy set prototypes that 
were also used by Moore et al. (1991). The component pattern for each prototype 
is presented in Table 1 (p. 88). The everything-wrong and everything-right 
prototypes represent the beginning and end points of development, respectively. 
The adding prototype represents the pattern of component scores that would be 
produced by literal addition of the numerical temperatures or any other approach 
in which temperature is treated as an extensive quantity. The other three pro- 
totypes require that temperature be treated as an intensive quantity. They were 
based on the possibility that range and crossover components might be acquired 
in a single developmental sequence, or in either order. Both of these components 
require coordination of two variables. The range component represents the un- 
derstanding that the final temperature should be between the two combined 
temperatures. The crossover component represents the understanding that quan- 
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Table 1. Component Patterns for the Fuzzy Set Prototypes 

Component Score 

Fuzzy Set Prototype Main Elect Mono. Above-Below Range Crossover 

1. Everything-right 
2. Everything-but- 

crossover 
3. Everything-but-range 
4. Everything-but-rdnge- 

and-crossover 
5. Adding 
6. Everything-wrong 

Perfect 

Perfect 
Perfect 

Perfect 
Perfect 
Chance 

Perfect 

Perfect 
Perfect 

Perfect 
Perfect 
Chance 

Perfect 

Perfect 
Perfect 

Perfect 
Chance 
Chance 

Perfect 

Perfect 
Chance 

Chance 
zero 
Chance 

Perfect 

Chance 
Perfect 

Chance 
Chance 
Chance 

tity influences the magnitude of the temperature change, and can be seen in the 
crossover interactions in Figure 1. 

Reed and Evans (1987), using an acid mixture task with college students, 
found that the range and crossover components contributed independently as 
predictors of response accuracy.’ Thus, our prototypes allow for the possibility 
that the range and crossover components develop independently as opposed to in 
a fixed developmental sequence. If range and crossover are acquired in an 
invariant sequence, then subjects should be found in either the everything-but- 
crossover or everything-but-range fuzzy set, but not both. If there are two 
independent developmental paths for range and crossover, then individuals 
should appear in both fuzzy sets. Piaget (1960) presented examples of concepts 
that develop independently, such that alternative developmental sequences are 
found across individual children within the same knowledge domain. Our study 
tests for the presence of such alternate developmental paths. 

Moore et al. (199 1) showed that the distribution of memberships in the fuzzy 
developmental levels differed between the intuitive and numerical versions of the 
temperature-mixture task. The interesting question in this experiment is how task 
order influences the distribution of memberships in the six fuzzy developmental 
levels in the numerical condition. To the extent that subjects are able to use their 
intuitive knowledge to guide their numerical task performance, task order should 
influence the likelihood of membership in the adding fuzzy developmental level, 
because this level represents treatment of temperature as an extensive quantity. 
Alternatively, if subjects are unable to use their intuitive knowledge to guide their 

3Reed and Evans (1987) studied an acid mixture task and used the term “monotonicity” to 
describe the relationship between stimulus quantity (as a proportion of total quantity) and resulting 
acid concentration. Reed and Evans’s monotonicity component is closest to the component we call 
crossover. Their range component is analogous to the range component in our study. 
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numerical performance, then task order should not influence membership in the 
fuzzy developmental levels. 

In summary, this study examines the relationship between intuitive and nu- 
merical proportional reasoning using components of understanding and the fuzzy 
set approach introduced by Moore et al. (199 1). By manipulating the order of the 
intuitive and numerical tasks, the experiment tests the hypothesis that intuitive 
knowledge can be used to regulate numerical strategies, even when intuitive task 
understanding is incomplete. 

METHOD 

Subjects 
A total of 224 subjects from three grade levels participated: 66 fifth graders (M = 
10.5 years, range = lo-12 years), 70 eighth graders (M = 13.25 years, range = 
13-14.8 years), and 88 college students (M = 19.25 years, range = 17.9-22 
years). The numbers of subjects in the intuitive-first condition were 34, 37, and 
44, for fifth, eighth, and college, respectively. The experiment was conducted in 
groups of approximately 20. The fifth and eighth graders were students in a local 
public school, which reported nonsystematic assignment of students to classes. 
Those students who received parental permission participated in their regular 
classroom groups. Groups were randomly assigned to order conditions. The 
college students were undergraduates in introductory psychology who received 
extra credit points for their participation. They participated outside regular class 
time in groups of approximately 20. One additional fifth grader was eliminated 
from the analysis because she did not complete the numerical condition of the 
task, and a second fifth grader was eliminated due to failure to follow 
instructions. 

Procedure and Design 
Stimuli were presented pictorially to avoid the mechanical difftculties of dealing 
with real water. The stimuli were two drawings of glasses, and a drawing of a 
pitcher with a handle and spout. All drawings were 12 X 26 in. (30.5 X 66 cm) 
in size, and constructed of felt board. Solid blue felt strips represented water. 
Each drawing was accompanied by a 16-in. (40.6-cm) schematic thermometer 
with a movable marker to indicate temperature. The subjects marked their re- 
sponses in booklets, which contained reduced pictures of the thermometers, 
using a new picture on each trial. 

All subjects participated in both the intuitive and numerical conditions, with 
order manipulated between groups. For each condition the drawings of the con- 
tainers and thermometers were set on a table in front of the group. Two of the 
containers, which will be referred to as the standards, were always approx- 
imately half full of blue felt water. The two standards were constant throughout 
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each condition. One standard always contained 40” water, and was described as 
“cool” water in the intuitive condition. The second standard always contained 
60” water, and was described as “warm” water in the intuitive condition. One 
thermometer, marking the temperature of the water, accompanied each standard. 
In the intuitive condition the thermometers were labelled with a drawing of a 
snowman at the bottom, and of a fire at the top, and were not graduated. The 
answer booklet thermometers were also not graduated in the intuitive condition. 
Numbers were present only on the backs of the thermometers in the intuitive 
condition for the experimenter’s use. In the numerical condition the ther- 
mometers were labelled from 0 to 80 in 5-degree increments on both the stimuli 
and the answer booklets. 

On each trial the experimenter changed the quantity and temperature of the 
water in the pitcher. The subjects were asked to predict the final temperature of 
one of the standards after the water from the pitcher had been added to one of the 
standards. After four practice trials each condition consisted of 24 trials gener- 
ated by the 2 X 4 X 3 (Standard Temperature X Added Temperature X Quantity 
of Added Water) ANOVA design shown in Figure 1. 

The added quantities were described as 1, 2, or 3 cups of water in the 
numerical condition, whereas the standards were described as 3 cups. In the 
intuitive condition the experimenter simply said “this much water” and pointed 
to the felt strips on the drawings. The four added temperatures were 20”, 40”, 
60”, and 80”. The numerical values were given orally and on cards displayed next 
to the drawing in the numerical condition. In the intuitive condition the tem- 
peratures were described as “cold” (20”), “cool” (40”), “warm” (609, and 
“hot” (80”). The subjects were given the quantity of the water in the pitcher, the 
temperature of the water in the pitcher, and standard to which the water was 
added. The subjects were asked, “what would be the temperature of the water in 
this glass, after I’ve poured in this water from the pitcher?” The experimenter 
always pointed to the pitcher and relevant standard as she stated the question. 
The subjects marked their answers on the thermometer pictures in their booklets. 
In the numerical version they were instructed to try to use math and to write the 
number that represented the temperature in addition to marking the schematic 
thermometer. At the end of each version of the task, subjects were asked to write 
a description of how they found their answers. 

RESULTS 

Mean Component Scores 
The mean component scores are plotted in Figure 2 as a function of age group, 
task, and task order. Because the raw component scores had different maximums 
and minimums, all components were linearly transformed to a percentage scale 
to facilitate comparison. Chance performance is 50%. except for the range com- 
ponent for which chance is 22%. The standard errors are included in Figure 2. 
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Order of tasks had a larger influence on the numerical than on the intuitive 
component scores. In a 2 X 2 X 3 X 5(0rder X Task X Grade X Component) 
ANOVA, a significant interaction was found, F(8, 872) = 2.54, p < .Ol. A 
separate ANOVA of the numerical task alone showed a significant Order X 
Grade X Component interaction, F(8, 872) = 4.24, p < .Ol, a significant Order 
X Component interaction, F(4, 872) = 10.32, p < .Ol, an effect of order, F(1, 
218) = 4.89, p < .05, and a Grade X Component interaction, F(8, 872) = 
32.11, p < .O 1. Examination of the lower panels of Figure 2 shows that for the 
fifth and eighth graders the range and above-below components are higher in the 
intuitive-first order than in the numerical-first order, whereas there is no order 
effect for the college students. For the eighth graders all of the components were 
slightly worse in the numerical-first order than in the intuitive-first order. For the 
fifth graders, however, two of the components were slightly better in the numer- 
ical-first order (main effect and monotonicity). This result might be expected if 
the fifth graders are likely to add temperatures in the numerical-first order. 
Numerical addition would be expected to produce more consistently high main 
effect and monotonicity scores than estimation. 

In contrast, for the intuitive task in the upper panels of Figure 2, it can be seen 
that there is very little effect of order on the component scores for any of the age 
groups. In an ANOVA of the intuitive task alone, the Order X Grade X Compo- 
nent interaction was significant, F(8, 872) = 2.67, p < .Ol, as was the Grade x 
Component interaction, F(8, 872) = 16.43, p < .Ol, but there was no Order x 
Component interaction, F(4, 872) = 2.14, p > .05, and no effect of order, F( 1, 
218) = 2.29, p > .lO. The upper panels of Figure 2 show little effect of order 
except on the crossover component for the fifth graders. It appears that for the 
fifth graders, performing the numerical task first interfered with their intuitive 
understanding of the crossover component. 

The manipulation of task order influenced performance primarily in the nu- 
merical task. The performance of the fifth and eighth graders in the numerical 
task was improved considerably by experiencing the intuitive task first. In con- 
trast, there was little effect of task order on performance in the intuitive task itself 
or on the performance of the college students. 

Fuzzy Set Analysis 
The overall analyses of the age groups showed significant effects of the task- 
order manipulation on the numerical task. The fuzzy set method provides a way 
of examining individual differences within age groups. Each person’s component 
profile represents the structure of the person’s understanding of the task as 
expressed in task performance. As a measure of the degree of fit, or degree of 
membership in each fuzzy set, we calculated the Euclidean distance from each 
subject’s component profile to each of the six fuzzy set prototypes presented 
earlier. A person can be said to be “in” the fuzzy set to which he or she is 
closest. Based on previous research, we expected that there would be more 
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subjects falling closest to the adding and everything-wrong prototypes in the 
numerical task than in the intuitive task. The everything-wrong prototype repre- 
sents chance performance on the task. If a subject is confused or experiments 
with ineffective numerical strategies, then the component profile should be close 
to the everything-wrong prototype. Such a pattern should be more likely in the 
numerical than in the intuitive task. Any response pattern in which temperature is 
treated as an extensive variable should be close to the adding prototype. In 
addition, to the extent that subjects are able to use their intuitive understanding to 
regulate their numerical performance, task order should influence the frequencies 
of subjects in the adding group in the numerical condition. 

Table 2 presents the numbers of subjects falling closest to each fuzzy set 
prototype for the intuitive and numerical tasks when these tasks were performed 
first. This is a between-subjects comparison. The chi-square statistic was used to 
test the hypothesis of homogeneous distributions across the intuitive and numer- 
ical tasks (Marascuilo & Serlin, 1988), and was significant, x2(5, N = 224) = 
108.71, p < .Ol, showing that the distributions differ. The differences are ap- 
proximately as expected based on the results of Moore et al. (1991). In the 
intuitive task, a high proportion of subjects fell closest to the everything-but- 
range and everything-but-range-and-crossover prototypes, whereas, in the 
numerical task, a high proportion of subjects fell closest to the adding, every- 
thing-wrong, and everything-right prototypes. The fuzzy set analysis shows that 
in the intuitive task subjects were unlikely to treat temperature as an extensive 
quantity. 

Figures 3 and 4 (pp. 94-95) present the mean temperature judgments for the 
four fuzzy set groups with the largest numbers of subjects in the intuitive and 
numerical tasks, respectively. These results show that the fuzzy set approach 

Table 2. Numbers of Subjects Closest to Each Fuzzy 
Set Prototype 

Task 

Fuzzy Set Intuitive Numerical 

,I. Everything-right 13 50 

Between 1 and 2 3 4 
2. Everything-but-crossover II 8 
3. Everything-but-range 41 I 

Between 3 and 4 3 2 

4. Everything-but-range-and-crossover 39 5 
5. Adding 1 23 
6. Everything-wrong 4 15 

NOW. For the chi-square test, those equidistant between two categories 
were placed in the higher numbered category. Data are for all age groups 
combined for the task performed first. 
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captures groups of individuals with qualitatively dih’crent response patterns. 
Note that the four largest groups differ between the task versions. Each fuzzy set 
group has a distinct pattern of judgments that is consistent with its prototype 
definition. An ANOVA perfomled on the four most numerous fuzzy set groups in 
each task version showed a significant Group X Quantity X Temperature interac- 
tion, F( 18, 1254) = 6.6 I, p < .O I, F( 18, 1206) = 3.96, p < .O I for the intuitive 
and numerical task versions, respectively. These interactions verify that the 
pattern of responses differed significantly among the fuzzy set groups. 

First consider the intuitive groups in Figure 3. The mean responses of the 
everything-right group are very close to the correct answers and show a large 
significant Quantity X Tempernture interaction with the expected crossover 
form. F(6, 162) = 26.72, p < .Ol. The everything-but-crossover group shows 
almost no discernible effect of quantity, and although the Quantity X Tem- 
perature interaction is significant, F(6, 156) = 2.23, p < .05, it is small and did 
not have the correct form. For the everything-but-range group, there was a large 
significant interaction of Quantity X Temperature, which showed the correct 
crossover form, F(6, 426) = 56.09, p < .Ol. However, the means of this group 
have a wider spread than the correct answers, consistent with the prototype 
definition for this group. The results for the everything-but-range-and-crossover 
group also showed a significant interaction of Quantity x Temperature, F(6, 
510) = 4.55, p < .Ol, but it also did not have the correct crossover form. 

The patterns of means for the numerical fuzzy set groups in Figure 4 also map 
neatly onto the prototype definitions. The mean responses of the everything-right 
group are extremely close to the correct answers, and the Quantity x Tem- 
perature interaction is large with the correct crossover form, F(6, 636) = 272.70, 
p < .Ol. For the everything-but-crossover group, the quantity curves are virtually 
colinear reflecting the fact that quantity was ignored by these subjects, Quantity 
X Temperature, F(6, 186) = 2.86, p > . IO, although the effects of standard, 
F( I, 31) = 483.24,/l < .Ol and temperature, F(3, 93) = 639.63, p < .OI, were 
significant. The adding group shows a pattern in which all the means are above 
the values of the standards (horizontal dashed lines), as expected if the subjects 
treat temperature as an extensive quantity. There were significant effects of 
standard, F(I, 31) = 34.29,~ < .Ol, and temperature, F(3, 93) = 101.23,~ < 
.Ol, but no other effects or interactions. Finally, the everything-wrong group 
shows a nonsystematic pattern of responses. Only the effect of temperature was 
significant, F(3, 99) = 4.97, p < .Ol, and compared to the other groups it was 
quite small. These subjects appear to have been confused by the numerical 
version of the task. This type of nonsystematic responding was very rare in the 
intuitive version of the task in any of the age groups. 

Age Differences in Fuzzy Set Membership 
Figure 5 presents the age distributions of those individuals who are closest to 
each fuzzy set prototype in the two versions of the task. These results show that 
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Developmental Progression of Fuzzy Stages: 
Intuitive Condition 
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Figure 5. Percentage of subjects in each age group located closest to each fuzzy set 
prototype. 

two different developmental pictures emerge depending on task format, demon- 
strating the importance of distinguishing between intuitive and numerical propor- 
tions. In the intuitive task (top panel of Figure 5) a large proportion of the college 
students were closest to the everything-right and everything-but-range pro- 
totypes. The largest proportions of the fifth and eighth graders were closest to the 
everything-but-range and everything-but-range-and-crossover prototypes. A chi- 
square test on the frequencies showed significant differences in membership 



98 Valerie Allen Ahl, Colleen F. Moore, and James A. Dixon 

across age groups, ~“(8. N = 224) = 51.07.1~ < .()I. (The adding and cvcry- 
thing-wrong groups were combined because of small cxpcctcd values.) For the 
numerical task in the bottom panel of Figure 5 thcrc were also significant age 
differences, x2(8, N = 224) = 136.06. p < .Ol. (The two smallest groups, 
everything-but-range and everything-but-range-and-crossover, were combined.) 
In the numerical task it can be seen that the proportion of subjects closest to the 
everything-right prototype increased with age, whereas the proportions closest to 
the adding and everything-wrong prototypes declined with age. It is clear that 
college students perform exceedingly well when they arc given numerical values. 
This may be because the college students use the numbers to calibrate their 
responses very accurately, so that their responses are all within range in the 
numerical task. In contrast to the excellent performance of the collcgc students, 
the majority of the fifth graders are closest to the adding and everything-wrong 
prototypes in the numerical task. 

Individual Differences and Developmental Paths 
The fuzzy set approach provides both fine-grained information about individual 
understanding and coarse-grained infomlation about the sequcnccs of develop- 
mental levels. As a consequence, the fuzzy set approach encourages description 
of possible alternate developmental pathways to mature performance in a do- 
main. For the intuitive task, the fact that subjects are found closest to both the 
everything-but-range and the everything-but-crossover prototypes decreases the 
plausibility of a universal invariant sequence for the development of the cross- 
over and range components. The data are consistent with the interpretation that 
there are two developmental paths: Crossover can be acquired before the range 
component, or vice versa. 

An important aspect of the fuzzy set approach is that it provides a measure 01 
degree of membership, or goodness of fit, of each subject to each fuzzy set 
prototype. A more detailed look at the distances to the prototypes helps to show 
other aspects of the developmental paths for the task. The rank order of each 
subject’s distances to the fuzzy set prototypes provides a simplified profile locat- 
ing the individual with respect to all the prototypes. Figure 6 presents a sketch of 
the developmental paths for the intuitive task. The interior part of Figure 6 shows 
the positions of those subjects closest to the four most populous intuitive pro- 
totypes which form a rectangle in a plane. The rectangle is partitioned into eight 
regions, each defining a different rank order of distances to the four prototypes, 
which are labeled on the edges (Coombs, 1964). The number inside each slice of 
the rectangle shows the number of subjects who had that particular distance rank 
order. The two numbers exactly on the dashed lines are subjects exactly halfway 
between prototypes. This provides a diagram of the positions of the subjects in 
the developmental space. For example, those subjects closest to the everything- 
but-range-and-crossover prototype are divided between being next-closest to 
everything-but-crossover (II = 47) or everything-but-range (11 = 19). These 
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Ev. But 
Crossover 

Ev. Wrong __t 
Ev. But - 747 ‘,I ,’ 2 \ TF” 

Figure 6. Developmental paths for the fuzzy set groups of the intuitive task. The 
interior of the diagram maps the positions of individuals with respect to four of tbe 
fuzzy set prototypes based on the rank orders of their distances to the prototypes. 
The sequences of numbers around the edge correspond to the rank order of distances 
to the prototypes for each region. The numbers at the vertices label the four pro- 
totypes. Only those subjects closest and next-closest to these four fuzzy sets are 
included. Prototypes are numbered as in the tables. 

might represent the beginnings of the two alternative developmental paths. Thus, 
examination of the membership profiles shows the developmental pathways in 
more detail.J 

Task Order 
Because all college students in the numerical task were closest to either the 
everything-right or everything-but-crossover prototypes, their data are not petti- 
nent to the hypothesized effects of task order. Table 3 (p. 100) presents the 
frequency of fifth- and eighth-grade subjects closest to each fuzzy set prototype 
in the two order conditions of the numerical task. The distributions differed 

“One objcclion is III~I dcvclopmcmal pathways canno bc determined without longitudinal data. 
Our view is similar IO 1ha1 of Coombs and Smith (1973), Davison (1983) and Froman and Hubert 
(l9fig). who all presen1cd methods of ksting dcvelopmcntul sequence hypothcscs applicable to cmss- 
scclional data. The basic idea behind the approaches of Coombs and Smith (1973) and Davison 
(1983) is IO USC: the subjcc1’s rcsponsc pattern lo constrnc1 a “prcferencc order” for the various stages. 

The prcfcrcncc orders can then be used IO 1cs1 the hypolhesis that there is a single developmental 
pathway. Longitudinal duta provide the most dcfinilivc evidence abou1 developmental pathways, and 
arc csscntial if mtc of change is of imcrest. For determining developmental priority, cmss-sectional 
data arc suhkicnt. 
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Table 3. Numbers of Subjects in Numerical Task Closest to Each 
Fuzzy Set Prototype 

Task Order 

FUZZY Set Intuitive First Numerical First 

1. Everything-right 19 IO 
2. Everything-but-crossover 14 8 
3. Everything-but-range 1 2 
4. Everything-but-range-and-crossover 9 7 
5. Adding 9 23 
6. Everything-wrong 19 15 

Nore. Data are from the fifth and eighth graders. For the chi-square test, Groups 3 
and 4 were combined. 

significantly, x2(4, N = 136) = 10.83, p < .05. A post hoc test using Good- 
man’s method (Marascuilo & Serlin, 1988) showed that the proportions in the 
adding group differed significantly across task-order conditions, z = 3.186, p < 
.05, s* = 3.081. Thus, experiencing the intuitive task first decreased the fre- 
quency of subjects closest to the adding prototype. In contrast, for the intuitive 
task, there was no effect of task order, x2(4, N = 136) = 4.78, n.s. Thus, task 
order influenced the likelihood that temperature would be treated as an extensive 
quantity in the numerical task. 

Relationship Between Intuitive and Numerical Performance 
A remaining issue is the relationship between level of intuitive understanding and 
treatment of temperature as an extensive quantity in the numerical task. In order 
to examine the relationship between the intuitive and numerical tasks, we con- 
ducted several analyses. Table 4 presents the numbers of subjects closest to each 
fuzzy set prototype for the two versions of the task. First, Cohen’s kappa was 
calculated for Table 4 as a measure of the exact correspondence of fuzzy set 
categorization across tasks. The value was significant, but small and negative, K 
= -.0864, z = -2.564, p < .05. This shows a significant difference between 
fuzzy set groupings on the two tasks. Second, a chi-square test of independence 
on the data in Table 4 was significant, x2( 16, N = 224) = 45.12, p < .Ol, 
showing that there is a relationship between performance in the two tasks, 
although it is not one of exact correspondence. (The adding and everything- 
wrong groups were combined for the chi-square test because of small expected 
values.) As shown in Table 4, those subjects who were closest to the adding and 
everything-wrong prototypes on the numerical task (Categories 5 and 6) were 
most likely to be closest to the everything-but-range-and-crossover prototype 
(Category 4) on the intuitive task, and were very unlikely to be closest to the 
everything-right prototype (Category 1) on the intuitive task. Thus, those sub- 
jects who showed either nonsystematic response patterns, or who treated tem- 
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Table 4. Numbers of Subjects Closest to Each Fuzzy Set Prototype 

Intuitive Prototype 

Numerical Prototype 1 2 3 4 5 6 

1. Everything-right 19 16 43 27 2 0 
2. Everything-but-crossover 6 5 7 13 0 1 
3. Everything-but-range 0 0 2 I 0 0 
4. Everything-but-range-and-crossover I 3 5 4 I 2 
5. Adding I 1 5 23 0 2 
6. Everything-wrong I 2 10 18 0 3 

Nore. Prototypes are numbered as in Tables 1 and 2. Subjects equidistant between two categories 
were placed in the higher numbered category. 

perature as an extensive quantity in the numerical task, were most likely to be 
those with relatively poor intuitive understanding. 

It is important to note, however, that those subjects closest to the everything- 
but-range-and-crossover prototype in the intuitive task do have above-chance 
understanding of the above-below component. An above-chance score on the 
above-below component implies that temperature is being treated as an intensive 
quantity. Thus, an intuitive response pattern which is close to the everything-but- 
range-and-crossover prototype (Category 4) is nor consistent with the treatment 
of temperature as an extensive quantity represented by the adding prototype. This 
implies that, even for those subjects closest to the everything-but-range-and- 
crossover prototype on the intuitive task, there can be an influence of task order 
on their numerical performance. That is, the intuitive understanding of subjects 
in the everything-but-range-and-crossover group is good enough that adding 
numerical temperatures should seem counterintuitive if the subjects use their 
intuitive understanding to guide their numerical performance. 

In summary, this experiment showed both a significant relationship between 
intuitive and numerical task performance, and an effect of task order on numer- 
ical task performance. The overall pattern is consistent with the interpretation 
that subjects are capable of using even incomplete intuitive understanding to 
regulate their numerical task performance. 

DISCUSSION 

Influence of Intuitive Task on Numerical Task Performance 
This experiment shows that performing the intuitive version of the temperature 
task first improves performance in the numerical task. This was shown in the 
mean age-group differences in component scores as a function of task order, and 
in the differences in the distribution of subjects across fuzzy set prototypes as a 
function of task order. The fuzzy set analysis provides evidence that even in- 
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complete intuitive understanding can be used to regulate responses in the numer- 
ical task. 

There have been very few empirical studies in which subjects have perfomled 
the same task presented in both intuitive and numerical forms (Brunswik, 1956; 
Budescu, Weinberg, & Wailsten, 1988; Haines, 1988; Hammond et al., 1987). 
The primary goals of those previous studies have been either to compare the 
accuracy of performance in the two conditions, or to chronicle the characteristics 
of performance in the intuitive and numerical modes. The results of the previous 
studies do not clearly point to the superiority of either numerical or intuitive 
performance in adult subjects. Hammond et al. (1987) found that highway en- 
gineers performed more accurately when judging highway capacity if the task 
were presented numerically and they were encouraged to work out explicit equa- 
tions for making their judgments, than if the task were presented pictorially 
without numbers. This finding seems similar to the superior performance of the 
college students in the numerical task as opposed to the intuitive task here. 
However, Hammond et al. (1987) also found that extreme errors were more 
likely to occur for numerically calculated answers than for intuitively based 
answers. Budescu et al. (1988) found that, in a gambling task, college students 
won slightly less when probabilities were given verbally than when they were 
given pictorially or numerically, but decision time was slightly faster in the 
pictorial condition than in the other conditions. Erev, Bomstein, and Wallsten (in 
press) found that when subjects made numerical assessments of probability, their 
choices between gambles were less optimal than when they made choices with- 
out numerically evaluating probabilities. Thus, whether adult performance in a 
numerical task is superior to performance in an intuitive task depends partly on 
the criteria used and perhaps other task variables. 

In contrast to past research, in this study the goal was not to determine 
whether performance is “better” in the numerical versus intuitive condition, but 
rather to explore the ability of subjects to use even partial intuitive understanding 
to direct their numerical performance. The results showed that performances in 
the two versions of the task are related and, for the fifth and eighth graders, 
performing the intuitive task first improves performance in the numerical task. 
Thus, subjects do use even incomplete intuitive task knowledge to guide their 
numerical solutions. This study stands as one of only a very few empirical 
studies addressing the way intuitive understanding is used during numerical 
problem solving, or during what Brunswik (1956) called “analytic” thought. 

Galotti’s (1989) review of the literature on everyday and formal reasoning 
found very little research that has addressed the relationship between these two 
modes of thought. There is also, currently, little theory available regarding the 
interconnections between intuitive and numerical reasoning. In the viewpoint of 
Inhelder and Piaget (1958), the construction of a numerical proportion represents 
more advanced thought than does a qualitative proportion, even though the 
ability to think qualitatively persists after the development of quantitative propor- 
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tions. For lnhelder and Piaget, both modes of thought may exist simultaneously, 
but qualitative understanding is a necessary prerequisite for quantitative propor- 
tions. Brunswik (1956) on the other hand, viewed intuitive and analytic (or 
formalized numerical) thought as opposite poles of a cognitive continuum. Ac- 
cording to Brunswik, adult thought varies along the continuum between intuitive 
and analytic, and neither pole of the continuum is inherently more characteristic 
of mature thought than the other. 

Hammond ( 1982; Hammond et al., 1987) developed a theory of the way that 
task characteristics influence the extent to which a person will perform a task 
intuitively versus analytically. Although a theory of how task characteristics 
influence one’s position on Brunswik’s intuitive-analytic continuum is important, 
it does not completely explain the effects of task order found in our study. The 
question addressed in our research is the extent to which subjects use knowledge 
that is available to them in the intuitive cognitive mode to guide their perfor- 
mance in a more analytic cognitive mode. For a given task it is possible that 
subjects may alternate among different cognitive modes, using an estimate gener- 
ated in the intuitive mode to constrain the type of computational solutions gener- 
ated in the analytic cognitive mode (Dixon & Moore, 1991). We propose that one 
important aspect of development is the ability to shift along the cognitive con- 
tinuum and use intuitive cognition to guide analytic cognition. The task-order 
effects for the fifth and eighth graders in this study suggest that these age groups 
do not spontaneously make such shifts unless the memory availability of their 
intuitive representations is high. 

Proposed Relationships Between Intuitive and Numerical Cognition 
Under what conditions would a strong relationship between intuitive and numer- 
ical performance of the same task be expected? The relationship between the two 
is likely to depend on (a) the availability in memory of intuitive knowledge, 
individual mathematical operations, and mathematical formulas; (b) the ability to 
evaluate computed numerical answers against intuitively generated estimates, the 
quality of the intuitive estimates, and the likelihood of conducting this evalua- 
tion; and (c) the ability to use analogical reasoning to map one’s intuitive under- 
standing onto mathematical solutions learned in other settings. These are all 
processes in which it is likely that developmental change will be found. 

The order effect in this study shows that increasing the memory availability of 
intuitive knowledge increases the correspondence between intuitive and analytic 
thought for younger age groups. Once intuitive knowledge is available in memo- 
ry, however, it must be used to evaluate the results of one’s calculations. Such 
comparisons require that a person make an intuitive estimate separurely from the 
process of calculating a numerical answer, and then compare the two. Even when 
intuitive and numerical answers are generated separately and compared appropri- 
ately, if intuitive understanding is poor it may lead to the acceptance of an 
incorrect numerical strategy. If intuitive knowledge is adequate and is compared 
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correctly with answers generated by numerical calculations, then a calculation 
scheme that is qualitatively incorrect should, at a minimum, be rejected. Once a 
calculation scheme is seen to be incorrect, then the subject needs to modify it or 
develop a new one. 

In order to select computational schemes that are promising and to apply those 
computational schemes in a way that is consistent with one’s intuitive knowl- 
edge, analogical reasoning skills are also needed. Rejecting incorrect numerical 
approaches does not in itself yield a successful solution. For example, a person 
may know how to calculate a weighted average, and might even consider that the 
weighted average formula would apply to temperature mixture. However, with- 
out being able to connect the variables in the formula to the quantities and 
temperatures in a temperature-mixture task, the correct solution will not be 
achieved. Gentner (1983) called the process of connecting variables across tasks 
“structure mapping.” Intuitive knowledge of a problem provides a relational 
structure among the variables, and so the quality of intuitive knowledge should 
influence the structure-mapping process. 

From this analysis of the relationship between intuitive knowledge and numer- 
ical problem solving, it is clear that there are many ways in which subjects may 
fail to connect their intuitive and numerical knowledge. Based on this analysis, 
the relatively weak relationship between intuitive and numerical performance in 
this study is not surprising. Further research using task isomorphs is needed to 
examine the proposed connections and disconnections between intuitive knowl- 
edge and numerical problem solving. 

Developmental Levels As Fuzzy Sets 
This study used a new approach for representing the type of developmental 
changes that are often viewed as “qualitative” changes. A similar approach was 
proposed by Davison (1983) in which the distances of individuals from the ideal 
response patterns of a stage are measured. As in any developmental theory, in the 
fuzzy set approach, the investigator hypothesizes theoretically significant devel- 
opmental landmarks. The emphasis in the fuzzy set approach is not on whether 
the hypothesized developmental steps form a universal invariant sequence, de- 
scribe saltatory developmental changes, or are qualitatively distinct. Instead, the 
emphasis is on describing the developmental paths which are observed. 

By using the components of understanding to describe individuals as having 
different degrees of membership in the fuzzy developmental levels, a rapproach- 
ment between continuity and discrete stage theories might be achieved. For 
example, in a longitudinal study, progress toward a given fuzzy set would be 
reflected in an increase in the distance from the fuzzy set prototype to which that 
person was initially closest, and a decrease in distance to the next fuzzy set 
prototype in one of several possible developmental sequences. It becomes clear 
from this style of analysis that whether developmental levels are regarded as 
discrete or continuous is a matter of the grain of analysis. Using the coarse- 



Proportional Reasoning 105 

grained measure of nearest prototype, development can be viewed as discrete. 
Using the tine-grained measure of distance to the prototype, development can be 
viewed as continuous and there can be considerable differences between indi- 
viduals who are “in” the same fuzzy developmental level. As noted by Allen and 
Starr (1982), the grain of analysis can determine what structures one sees in 
research, and furthermore, different levels of analysis may be appropriate for 
different purposes. The fuzzy set approach encourages investigators to be explicit 
about the level of analysis they choose. 

Flavell (197 1) concluded that it is inadequate to view developmental stages as 
discrete categories between which subjects move in sudden leaps. Such a “car- 
icature” of a developmental stage theory implies that people spend more time 
statically being in a stage than dynamically developing. By viewing developmen- 
tal stages as categories with fuzzy boundaries, the field of developmental psy- 
chology can move beyond contentless arguments over whether developmental 
stages “really exist” (see Chapman, 1988, for an interesting discussion of philo- 
sophical issues related to this point). The fuzzy set approach provides methods 
for measuring degree of membership, rate of change between prototypes, and the 
pathways of development. This experiment illustrates how the effect of an ex- 
perimental manipulation can be studied using the fuzzy set approach. The fuzzy 
set approach provides an informative way to represent simultaneously individual 
differences within groups and qualitative developmental sequences. 
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APPENDIX 

Components of Understanding for Temperature Mixtures 

Main Effect 

Description. A coarse-grained measure of understanding the principle that 
the higher the added temperature, the higher the final temperature. 

Scoring. For each quantity, the answers for the highest and lowest values of 
the added temperature are compared. One point is added to this component if the 
responses are ordered correctly, one point is subtracted if they are ordered 
incorrectly. 

Monotonicity 

Description. A tine-grained measure of understanding the principle that the 
higher the added temperature, the higher the final temperature. 

Sccring. For each quantity, the ordering of the answer for adjacent values of 
added temperature was examined. One point was added to this component if the 
order was correct, and one point was subtracted if the order was incorrect. 

Above-Below 

Description. A measure of understanding the principle that the final tem- 
perature must be above the standard if the added temperature was above the 
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standard, and that the final temperature must be below the standard if the added 
temperature was below the temperature of the standard. 

Scoring. For each added temperature above the standard, one point was 
added to this component if the response was above the standard, and one point 
was subtracted if the response was below the standard. Responses to added 
temperatures below the standard were scored analogously. 

Range 

Description. A measure of understanding the principle that the final tem- 
perature must be within the range of the temperature of the added and standard 
quantities. 

Scoting. For each response that fell within the specified range, one point 
was added to this component; one point was subtracted for responses out of 
range. Stimuli for which the added temperature was equal to the standard were 
excluded. 

Crossover 

Description. A measure of understanding the principle that the change pro- 
duced by a given added temperature depends on the quantity of added water. 

Scoring. For each added temperature, the ordering of the responses to the 
highest and lowest quantities was examined. One point was added to this compo- 
nent if the ordering was correct, and one point was subtracted if the ordering was 
incorrect. 


