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The Developmental Role of Intuitive Principles in Choosing 
Mathematical Strategies 

J a m e s  A.  D i x o n  a n d  C o l l e e n  E M o o r e  
University of  wisconsin--Madison 

This study investigated the relation between the development of understanding principles that govern 
a problem and the development ofmathematical strategies used to solve it. College students and 2nd, 
5th, 8th, and I lth graders predicted the resulting temperature when 2 containers of water were 
combined. Students first estimated answers to the problems and then solved the problems using 
math. The pattern of estimated answers provided a measure of the intuitive understanding of task 
principles. Developmental differences in intuitive understanding were related to the type of math 
strategy students used. Analysis of individual data patterns showed that understanding an intuitive 
principle was necessary but not sufficient to generate a math strategy consistent with that principle. 
Implications for the development of problem solving are discussed. 

Current models of problem solving propose that a person's 
conceptual or intuitive understanding is an important factor in 
solving a problem with formal methods such as mathematics. 
Conceptual or intuitive understanding involves the qualitative 
representation of the relevant relations among variables in a 
task. We call this type of  understanding intuitive, following 
Brunswik (1956) and Hammond (1982; Hammond, Harem, 
Grassia, & Pearson, 1987). Greeno, Riley, and Gelman (1984) 
proposed that this type of  understanding, in which general prin- 
ciples of the task domain are represented, constrains and justi- 
fies performance. 

Most models of problem solving represent intuitive under- 
standing with knowledge structures such as schemas, produc- 
tions, or principles that contain information about the problem 
domain. For example, models of  children's counting explain de- 
velopmental differences in performance through differences in 
knowledge of principles (Briars & Siegler, 1984; Gelman & Gal- 
listel, 1978; Greeno et al., 1984). Understanding the one-to-one 
correspondence principle allows individuals to reject a counting 
procedure that assigns two numbers to one object. Note that 
one-to-one correspondence is a principle about the domain of  
number, not a counting procedure itself. 

The use of  principles that govern the task has also been shown 
to be important in more sophisticated domains. Experts group 
physics problems according to physics principles, but novices 
group problems according to surface features (Chi, Glaser, & 
Rees, 1982; Hardiman, Dufresne, & Mestre, 1989). Further, 
novices who mention principles when categorizing problems 
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perform better when solving subsequent problems (Hardiman 
et al., 1989). Models of  solving word problems also make a dis- 
tinction between understanding the domain and the formal pro- 
cedures used to solve problems (Briars & Larkin, 1984; Cum- 
mins, Kintsch, Reusser, & Weimer, 1988; Kintsch & Greeno, 
1985). 

All the approaches discussed above have a representation of 
the task domain that is distinct from the representation of  the 
formal procedures used to solve the problem. We call these rep- 
resentations of the problem domain intuitive understanding. 
We propose that intuitive understanding of  the task is repre- 
sented in terms of principles that specify the relations between 
variables in the task. Domain-independent formal methods for 
solving problems, such as mathematics, are represented sepa- 
rately and are not part of  understanding how the task works. We 
also propose that development of the intuitive representation is 
an important factor in explaining developmental differences in 
how individuals solve problems with formal methods. 

The present study explores the relationship between the de- 
velopment of intuitive understanding and the use of formal 
strategies. In order to examine this relationship it is necessary 
to measure intuitive understanding independently of formal 
strategies. Most research on problem solving has not directly 
measured intuitive understanding. Some researchers have as- 
sumed that intuitive understanding is at ceiling for a particular 
type of task (e.g., Cummins et al., 1988; Kintsch & Greeno, 
1985). Other researchers have used groups that are presumed 
to differ in their intuitive understanding, for example, novices 
and experts (e.g., Chi et al., 1982; Larkin, McDermott, Simon, 
& Simon, 1980; Reed, 1987), or have inferred differences in 
intuitive knowledge from patterns of formal problem solving 
performance (e.g., Gelman & Gallistel, 1978; Greeno et al., 
1984). Other researchers have measured intuitive understand- 
ing using participants' judgments about the goodness of another 
person's formal problem solving (e.g., Briars & Siegler, 1984; 
Gelman, Meck, & Merkin, 1986; Siegler & Crowley, 1994). We 
present a method for measuring intuitive understanding inde- 
pendently of  any formal problem solving. Measuring intuitive 
understanding separately from formal problem solving, either 
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the participant's own or that of another person, allows an exam- 
ination of: (a) the development of intuitive understanding with- 
out the influence of developmental differences in understanding 
formal strategies, and (b) the relation between people's under- 
standing of the problem domain and how they solve the prob- 
lem using formal strategies. 

Assessment o f  Intuitive Understanding 

In order to assess intuitive understanding of a domain inde- 
pendently of  formal problem solving, it is necessary that indi- 
viduals perform in the domain without using formal strategies. 
In the present study, we have participants estimate the answers 
to problems. In this task, which we call the intuitive task, the 
values of  the variables are given pictorially and with verbal de- 
scriptions, rather than numerically. Participants make their es- 
timates by physically adjusting a marker on an ungraduated 
scale. Reed (1987) proposed that estimation provides a good 
index of what people understand about a task. 

Using this method, we measured intuitive understanding of  a 
temperature mixture task in which participants are shown two 
containers of water each at a particular temperature. They are 
asked to judge what the temperature of  all the water together 
would be after the water was combined. The content of one con- 
tainer, the initial container, is always the same (i.e., temperature 
and amount did not vary). The content of the other container, 
the added water, varies in a factorial design. Each participant's 
pattern of judgments is scored for consistency with the princi- 
ples that govern the domain. (The principles are described 
below.) 

Four  Principles o f  Temperature  Mixture  

Past research has identified four principles that can be used 
to characterize intuitive understanding of the temperature mix- 
ture task. The first goal of the present study is to measure intu- 
itive understanding of temperature mixture in terms of these 
principles and to examine whether these principles are explic- 
itly used by participants as they generate mathematical solution 
strategies. Several lines of  evidence suggest that intuitive under- 
standing of mixture tasks is accomplished by understanding 
these principles. First, Strauss and Stavy (1982) reported that 
some participants justified their responses in a temperature 
mixture task and a sweetness mixture task by mentioning some 
of the principles we identify below. Second, similar principles 
have been proposed by a number of  researchers working with 
different mixture tasks (Ahl, Moore, & Dixon, 1992; Moore, 
Dixon, & Haines, 1991; Reed & Evans, 1987; Strauss & Stavy, 
1982). Third, developmental differences in performing the 
temperature mixture task are consistent with the hypothesis 
that individuals acquire the principles (Ahl et al., 1992; Moore 
et al., 1991 ). Ahl et al. (1992) and Moore et al. ( 1991 ) showed 
that different judgment patterns in the estimation task could be 
explained by the development of understanding these principles 
of temperature mixture. The four principles are explained 
below. 

Above-Below is the principle that, because the temperature 
of the initial container is held constant, the final temperature 
should always be in the direction of  the added temperature from 
the initial temperature. For example, when 20 ° water is tom- 

bined with the 40* initial container the resulting final tempera- 
ture must be colder than 40*. 

The Range principle is that the final temperature must fall 
between the initial and added temperatures. For example, when 
50* water is combined with the 40* initial container, the result- 
ing final temperature must be between 50* and 40*. 

The Crossover principle is the interaction between tempera- 
ture and quantity: The greater the quantity of the added water, 
the greater its effect, but the direction of the effect depends on 
whether the added temperature is above or below that of the 
water in the initial container. For example, three cups of 60* 
water will result in a warmer final temperature than one cup of 
60* water when each is combined with the initial container. 

The Equal-Temperatures-Equal (ETE) principle states that 
when the initial and added water are the same temperature, 
there is no temperature change. For example, when 40* water 
is combined with the 40* initial container, the resulting final 
temperature must be 40*. 

It is worth noting that Above-Below, Range, and ETE are 
logically related to one another. Above-Below specifies the rela- 
tion between the answer and the initial temperature (i.e., 
whether the answer should be larger or smaller than the initial 
temperature). Range specifies the relation between the answer 
and both the initial and the added temperatures. ETE can be 
considered a special case of  Range for trials where the initial 
and added temperatures are equal. The reason for including all 
three principles is that, despite the logical relations among the 
three principles, participants appear to use all three principles 
to understand the task. 

Assessment o f  Formal  Strategies 

In addition to having each participant perform the tempera- 
ture mixture task in the intuitive condition, we also had them 
perform the task in a numerical condition. In the numerical 
condition, the temperatures and quantities were specified in 
terms of  numbers as well as pictorially. Participants were asked 
to use math to solve the problems and to think aloud while do- 
ing so. 

Relation Between Intuitive Understanding and 
Generat ing Math  Strategies 

We looked for two types of evidence regarding the relation 
between intuitive understanding and use of  math strategies. 
First, would participants sometimes spontaneously mention the 
principles in thinking aloud while attempting to solve the task 
with math in the numerical condition? This would be evidence 
that they use the principles when trying to generate a math 
strategy. Furthermore, participants should only mention prin- 
ciples that they understand as shown by their scores on the prin- 
ciples from the intuitive task. However, participants may fail to 
mention principles for a number of reasons. For example, they 
may not understand the principle or they may understand it im- 
plicitly but not have the ability to verbalize it, or they may sim- 
ply omit mention of it. 

Second, to assess the developmental relation between intu- 
itive understanding and selecting math strategies, we compared 
our measures of intuitive understanding derived from the intu- 
itive condition to the particular mathematical strategies used in 
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the numerical  condition. If  intuitive understanding affects the 
generation of  mathematical  strategies, then different intuitive 
understandings should be evident for participants using differ- 
ent strategies. Previous research has suggested a causal role for 
intuitive understanding in generating math strategies. Hardi-  
man, Well, and Pollatsek (1984) showed that giving feedback 
on an estimation task improved overall math performance on 
structurally similar problems. Ahl et al. (1992) showed that 
performing the intuitive task before the numerical  task in- 
creased accuracy. These findings suggest that intuitive under- 
standing may influence the generation o f  mathematical  strate- 
gies. In this study, we record verbal protocols to examine  this 
question more precisely. 

Past work has shown that understanding of  the principles in- 
creases developmentally from second grade through college 
(Ahl et al., 1992; Moore  et al., 1991 ). However, there is consid- 
erable variability within age group, especially in the younger age 
groups. Because we were interested in how the development of  
intuitive understanding is related to developmental differences 
in math strategies, we sampled students from five different age 
groups between second grade and college. 

Because we were interested in whether a systematic relation 
between intuitive understanding and math strategies existed at 
all, we at tempted to create optimal conditions for participants 
to use their intuitive understanding while generating math. 
Clearly, i f  intuitive understanding is used in generating math, a 
large number  of  factors may influence whether it is used in any 
particular problem situation. In the present study we at- 
tempted,  in two different ways, to create optimal conditions for 
participants to use their intuitive understanding while generat- 
ing math. First, we always presented the intuitive task before the 
numerical  task. Performing the intuitive task first should cue 
participants'  intuitive understanding, making it more readily 
available during the numerical  task (Ahl  et al., 1992). Second, 
all the participants received instructions in the numerical  con- 
dition which encouraged them to compare  the two tasks. Ha l f  
of  the participants received additional instructions that encour- 
aged them to first estimate the answer in the numerical  task 
before solving the problem with math. Pointing out the sim- 
ilarity between the tasks and presenting the intuitive task first 
should help participants use their intuitive understanding dur- 
ing the strategy selection process. 

In summary, we hope that by having a detailed measure o f  
intuitive understanding and an exact accounting o f  what math 
strategies participants use, we may be able to begin to explain 
how the development o f  intuitive understanding influences the 
development of  formal problem solving. 

M e t h o d  

Participants 

One hundred sixteen students from five grades participated: 11 sec- 
ond graders, 26 fifth graders, 20 eighth graders, 29 eleventh graders, 
and 30 college students. Consent was obtained from all participants. 
Parental consent was obtained for the four younger groups. The four 
younger groups participated as volunteers from local public and paro- 
chial schools. College students received extra credit points. The elemen- 
tary and high-school age participants were from a predominantly Euro- 
pean American, small-size city (population approximately 200,000) in 
the Midwest. The schools were located in middle-class neighborhoods. 

The college students were from a large state university that also had a 
predominantly European American, middle-class population. 

Materials and Design 

All participants completed a temperature mixture task in each of two 
conditions, intuitive and numerical. In both conditions, participants 
were asked to predict the final temperature of water in a container, given 
the initial quantity and temperature of the water and the quantity and 
temperature of water added to the initial container. Two schematic wa- 
ter containers, one for the initial water and one for the added water, were 
used as stimuli. The schematic water containers were felt board 12 × 16 
in. (30.5 × 41 cm). Blue felt strips of three different sizes were used to 
represent the quantities of water. Each water container was paired with 
a schematic thermometer to represent the water temperature. The sche- 
matic thermometers were 16 in. (41 cm) high. A movable marker indi- 
cated the water temperature on each thermometer. 

In the intuitive condition, quantity and temperature were represented 
pictorially and described verbally (e.g., large amount, cold water). No 
numbers or graduations were presented to the participants on either the 
thermometers or containers in the intuitive condition. The ends of the 
thermometer were labeled with a drawing of a fire and a snowman to 
represent temperature extremes. The experimenter had numbers and 
graduations available on the back of each thermometer. The experi- 
menter manipulated the marker on the added container's thermometer 
to specify the added temperature. The participants responded by ad- 
justing the thermometer of the initial container. 

In the numerical condition, quantity and temperature were repre- 
sented pictorially but described numerically ( e.g., 1 cup, 60"). The ther- 
mometers and containers were identical to the ones in the intuitive con- 
dition except that they were marked with numbers in the numerical 
condition. In the numerical condition, participants were asked to try to 
use mathematics to find the answer. 

The intuitive task was always completed before the numerical task. 
The intuitive task was a 3 (Added Quantity) × 5 (Added Temperature) 
factorial design, and the numerical task was a 3 (Added Quantity) × 3 
(Added Temperature) factorial design. The smaller factorial design was 
used in the numerical condition because students regard these as diffi- 
cult math problems. Asking them to perform more than nine problems 
seemed excessive. The added temperatures in the intuitive factorial de- 
sign were analogous to 20", 30*, 40", 50", and 60* and were verbally 
labeled "very cold," "cold;' "cool," "warm," and "very warm," respec- 
tively. The added temperatures in the numerical factorial design were 
20", 40", and 60*. In both designs the added quantities were 1, 2, and 3 
cups, which were described as a "small amount," "medium amount," 
and "large amount" in the intuitive condition. The initial temperature 
in both conditions was always 2 cups of 40* (described as a medium 
amount of cool water in the intuitive condition). Trials within each task 
were presented in one of five random orders. 

Procedure 

Participants were tested individually in sessions lasting approxi- 
mately 30 min. The experimenter told the participant that he or she 
would be doing two types of problems about the temperature of some 
water when other water was combined with it. The intuitive task was 
then described. The experimenter explained that the felt boards repre- 
sented containers of water. The participant was told that each container 
had a thermometer that went with it which indicated the temperature 
of the water in the container. The experimenter explained the thermom- 
eter to the participant and gave examples of extreme temperatures (i.e., 
very warm and very cold). The experimenter did not proceed until sat- 
isfied that the participant understood the response scale. The experi- 
menter explained that the container on the participant's right (the ini- 
tial water) would always start out with a medium amount of cool water. 
The other container (the added water) would have different amounts 



2 4 4  DIXON AND MOORE 

and different temperatures each time. Participants were asked to judge 
what the temperature of all the water together would be when the added 
water was combined with the initial water. Participants responded by 
adjusting the thermometer of the initial container to show the combined 
water temperature. 

After completing the intuitive task, participants were read the in- 
structions (either elaboration or no elaboration, as explained below) for 
the numerical task. The experimenter explained that the task would be 
almost identical to the one just completed but that this time the quantity 
and temperature would be given in numbers and that they should try to 
use math to find the answer. The experimenter explained the task again 
in the same way as in the intuitive condition except that numbers were 
now used. The experimenter familiarized the participants with the 
numbered thermometers and the numbers for the quantities of water. 
Paper and pencil were provided in the numerical condition to facilitate 
computation. All participants were asked to think aloud as much as 
possible during the numerical task. Participants were instructed to rea- 
son aloud and say what numbers they were using and what they were 
doing with them. Their verbalizations were tape recorded. 

Participants performed the numerical task in one of two instruction 
conditions: elaboration or no elaboration. In the elaboration condition 
participants were told to estimate the answer before computing with 
math by translating the numerical values into intuitive values. For ex- 
ample, 60" water was analogous to "very warm" water, and 1 cup was 
analogous to a "small amount." Participants were told to translate the 
numerical values into descriptions and then estimate the answer by pre- 
tending the numbers were not there. After estimating, participants were 
to compute the answer using math. In the no-elaboration condition, 
participants were not instructed to make an estimate before computing 
but were told that thinking about the intuitive task might help them 
come up with the correct math. Because the instruction conditions did 
not differ significantly, they are not discussed further. 

Scoring of  Intuitive Principles 

Principle scores were derived from the pattern of final temperature 
judgments from the intuitive task only. We scored the judgment pattern 
of the intuitive task for consistency with each of the principles. Ifa par- 
ticipant understands a principle, then his or her pattern of judgments 
should be consistent with that principle. In describing the scoring we 
use the numbers for the temperature and quantity that corresponded to 
the position of the marker on the ungraduated thermometer and quan- 
tity of water. The numbers, although available to the experimenter, were 
not available to the participants. 

Above-Below. Above-Below measures understanding of the princi- 
ple that the final temperature should always be in the direction of the 
added temperature from the initial temperature. Six of the added tem- 
perature trials were below the initial temperature (20 ° and 30 °), and six 
were above ( 50 ° and 60°). One point was added for each answer on the 
appropriate side of the initial temperature. One point was subtracted 
for each answer on the inappropriate side, Nothing was done for ties 
(i.e., judged final temperature equal to the initial temperature). Forty- 
degree added temperature trials were not used. The maximum score 
was 12, and the minimum was -12.  

Range. Range measures understanding of the principle that the fi- 
nal temperature must fall between the initial and added temperature, 
regardless of the quantities. Range was scored by adding one point for 
every answer between the added and initial temperature. One point was 
subtracted for each answer not between the added and initial tempera- 
ture. Nothing was done for ties (i.e., judged final temperature equal 
to the initial temperature or added temperature). Forty-degree added 
temperature trials were not used. The maximum score was 12, and the 
minimum was -12.  

Crossover Crossover measures the understanding of the interaction 
between temperature and quantity (i.e., the greater the quantity of the 
added water, the greater the effect of its temperature). Crossover was 

scored by comparing the ordering of the extreme quantities for each 
added temperature. For example, the final temperature should be 
judged colder when 3 cups of 20" are added to the initial temperature 
than when I cup of 20* is added. One point was added for each correct 
ordering. One point was subtracted for each incorrect ordering. Noth- 
ing was done for ties (i.e., final temperature judged to be equal for the 
compared trials). Forty-degree added temperature trials were not used. 
The maximum score was 4, and the minimum was -4 .  

Equal-Temperatures-Equal. ETE measures understanding of the 
principle that the temperature does not change if added water is the 
same temperature as the initial temperature. ETE was scored using the 
40* added temperature trials. One point was added for each judged final 
temperature within 1" of 40*. The maximum score was 3, and the min- 
imum was 0. 

For ease of comparison, all principle scores were linearly transformed 
to percentage of the maximum score for that principle. 

Scoring of Verbal Protocols 

The verbal protocols from the numerical condition were scored for 
reference to principles and type of strategy used to solve the problem. 
The scoring was done by James A. Dixon. Two research assistants who 
were unaware of the predictions of the study coded the protocols from 
25 randomly chosen participants. Reliability was .90 as assessed using 
Cohen's kappa (Siegel & Castellan, 1988 ). 

R e s u l t s  

Replicat ing previous  work (Ahl  et al., 1992, Moore  et al., 
1991; Strauss & Stavy, 1982),  we found tha t  per formance  on 
the intui t ive task was very different f rom per fo rmance  on the 
numer ica l  task. In the intui t ive condi t ion even 2nd  graders 
quickly es t imated the answer. In the numer ica l  condi t ion,  par- 
t ic ipants  took  a considerable  a m o u n t  of  t ime  to choose and  ex- 
ecute a strategy. In the intuit ive condi t ion none  of  the partici-  
pants  appeared  to a t t emp t  math ,  and  none  o f  the par t ic ipants  
spontaneously  men t ioned  using math .  In the numer ica l  condi- 
t ion, 78% of  the par t ic ipants  a t t empted  some math .  The  re- 
ma in ing  22% est imated on all trials. These par t ic ipants  d id  not  
use explicit calculat ions despite repeated urging from the 
experimenter .  

The  response pa t te rns  for each condi t ion also differed dra-  
matically. For example,  the average absolute  error  was 4.22* for 
the intui t ive condi t ion and  16.02" for the numer ica l  condit ion,  
F (  1, 115) = 23.13, p < .01. O n  average, par t ic ipants  per formed 
m u c h  bet ter  in the intui t ive condi t ion.  This  result  reflects the 
tendency for es t imates  to be fairly close to the correct  answers 
even when  they systematically violated some of  the principles.  
In contrast ,  the  results o f  incorrec t  m a t h  strategies often pro- 
duce  answers tha t  are no t  even close to the correct  answer. 
Brunswik  ( 1956) made  a very s imilar  observat ion.  

Reference to Principles 

We found tha t  par t ic ipants  do talk abou t  the pr inciples  we 
proposed.  These pr inciples  were men t ioned  spontaneously  

Although the ETE principle makes a point prediction, we scored 
responses within l* of the correct answer as being consistent with the 
principle. Scoring responses with a more liberal criterion (counting re- 
sponses within 4* on either side of 40 as correct) does not change any of 
the results reported here. In fact, the measure we report and the more 
liberal measure correlate quite highly, r = .92. 
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Table 1 
Means and Standard Deviations of Intuitive Principle Scores 

Mention No mention 

Principle M SD M SD 

> .  10). However, there are significant differences when 5th and 
8th graders are compared to 11 th grade and college participants 
for Above-Below, F(  1, 103) = 14.92; for Range, F ( 1 , 1 0 3 )  = 
50.78; for Crossover, F (  1, 103) = 7.80; for ETE, F (  1, 103) = 
54.38. 

Above-Below 98 4.83 95 9.00 
Range 93 11.37 81 23.79 
Crossover 86 20.17 81 23.46 
Equal-Temperatures-Equal 87 27.42 48 44.79 

while participants were attempting to generate math solutions 
in the numerical condition. The percentage of participants who 
mentioned each principle was 53%, 45%, 12%, and 5% for ETE, 
Crossover, Above-Below, and Range, respectively. 

Participants who reference a principle while performing 
the numerical task should show good understanding of  that  
principle as measured by their intuitive principle score. 
Therefore, for those part icipants who reference a principle,  
the mean principle score should be high, and the standard 
deviation should be low. However, part icipants  who do not 
reference a principle may or may not understand the princi- 
ple. Therefore, for those part icipants  who do not reference a 
principle, the intuitive principle score should be somewhat 
lower but  have high variability. 

The means and standard deviations are shown in Table 1. For 
all principles, the mean intuitive principle score of  the Mention 
group was higher than the mean of  the No Mention group, al- 
though the difference was significant only for the ETE principle; 
for Above-Below, F(  l, 28) = 2.62; for Range, F(  l, 8) = 5.23; 
for Crossover, F(  l, 114) = 2.21; and for ETE, F(  l, 88) = 31.18 
using Welch's correction for unequal variances (Marascuilo & 
Serlin, 1988).2 Because the size of the mean difference depends 
on the likelihood that participants will spontaneously mention 
a principle, significant differences were not predicted. 

Examination of Table l shows that the standard deviations 
were smaller for the Mention groups than for the No Mention 
groups, as predicted. The variances were significantly different 
for all principles mentioned except Crossover: F(  10 l, 13) = 3.47 
for Above-Below; F(  109, 5 ) = 4.37 for Range; F(63, 51 ) = 1.35 
for Crossover; and F(54, 60) = 2.67 for ETE. Participants who 
mentioned a principle showed good understanding of  the princi- 
ple in the intuitive condition. Relative to the No Mention group, 
the principle scores of  the Mention group have low variability, 
indicating that they all had similar understanding. 

Development of  Intuitive Principles 

Figure 1 shows the mean principle scores for each age group. 
The effect of grade is significant for all principles, for Above- 
Below, F(4,  111) = 9.32; for Range, F(4 ,  111) = 17.52; for 
Crossover, F(4 ,  111 ) = 3.14; for ETE, F(4 ,  111 ) = 19.57. Ex- 
amination of Figure 1 shows a progression in understanding the 
principles of  the domain. Whereas 2nd graders show the poorest 
understanding of  the task, 5th and 8th graders appear to have 
very similar understanding, as do 1 lth-grade and college-age 
participants. Consistent with this interpretation, there are no 
significant differences between the principles scores for 5th ver- 
sus 8th graders or for 11 th graders versus college students (all p s 

Developmental Differences in the Use of  
Mathematical Strategies 

The vast majority of participants (82%) attempted at least one 
math strategy in the numerical condition. There was little devel- 
opmental change in whether participants attempted math. At 
least one math strategy was used by 91% of second graders, 85% 
of 5th graders, and approximately 80% of 8th graders, 1 l th grad- 
ers, and college students. Participants who did not attempt math 
in the numerical condition estimated their answers on all trials. 

Ten mathematical strategies were identified from the verbal 
protocols and worksheets. The strategies varied from adding the 
water temperatures, to the correct strategy of  taking the 
weighted average of  the temperatures with the quantities as the 
weights. The strategies are listed in the body of Table 2. Partici- 
pants used an average of  1.22 different math strategies across 
the nine trials (SD = 0.86). The number of  math strategies used 
was not significantly related to grade, F(4 ,  111 ) = 2.11, p < .09. 
The mean number of math strategies ranged from 1.58 for 5th 
graders to 0.93 for college students. (Because estimation is not 
considered a math strategy here, the mean number of math 
strategies can be less than one.) 

It should be noted that in the numerical condition all partic- 
ipants had estimation available to them as a backup strategy if 
they did not feel comfortable with the math they were generat- 
ing. A large percentage of participants in each age group esti- 
mated on at least one trial (55%, 69%, 65%, 100%, and 93% 
for 2nd grade through college, respectively). This suggests that 
participants were willing to use estimation when they were ei- 
ther having trouble generating math or were not satisfied with 
the math they were using. 

We classified each math strategy as being one of four types. 
Table 2 shows the mathematical strategies and their classifica- 
tions. Strategies that violate the Range principle (the upper two 
rows in Table 2) produce answers that are not between the 
added and initial temperatures. For example, addition of  the 
initial and added temperature always gives an answer that is not 
between the two temperatures (i.e., violates Range). These 
strategies also violate Above-Below on half of  the relevant tri- 
Ms. Strategies that do not violate Range (the lower two rows in 
Table 2) produce answers between the initial and added tem- 
peratures on all trials and never violate Above-Below. Strategies 
that ignore quantity (rows 1 and 3 in Table 2) simply do not 
use the quantities in the calculations. Those that use quantity 
inappropriately (row 2 in Table 2) use it either as an additive 
or strictly multiplicative variable. Strategies that use quantity 
appropriately use it in proportional schemes. 

The 3 (Added Temperature) × 3 (Added Quantity) factorial 
design in the numerical condition produces three types of prob- 
lems. Although all the problems can be correctly solved with 

2 All significant tests reported are at the p < .05 level unless otherwise 
indicated. 
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Figure 1. Mean percentage intuitive principle scores plotted as a function of grade with a separate curve 
for each principle. Bars are _+ 1 standard error. Temp.'s = temperatures. 

weighted averaging, weighted averaging is not  always the most 
efficient strategy. Specifically, when the added and initial water 
temperatures are equal (Equal Temperature problems) the 
most efficient procedure is to simply state that the water tem- 
perature does not change (although this would not  count  as a 
math strategy). Indeed, despite urging from the experimenter, a 
number  of participants would not do math on these types of 
trials and simply stated the answer without computation.  Sim- 
ilarly, when the temperatures are different but  the quantities are 
equal (Equal Quan t i ty -Unequa l  Temperature problems) ,  the 
most efficient strategy is to average the temperatures  and ig- 
nore the quantities. Only when both the temperatures  and 
quantit ies are unequal  (Unequal  Quan t i ty -Unequa l  Temper- 
ature problems)  is weighted averaging necessary. 

Table 3 shows the mean percentage of use for each strategy 
type by grade and problem type. For each participant we com- 
puted the percentage of use for each strategy type by taking the 
number  of times a participant used strategies of that type and 
dividing it by the total number  of trials for that problem type. 
The percentages in the table are averaged across participants for 
each grade. To analyze the developmental changes in Table 3, 
we examined each participant 's distribution of strategies across 
the different trial types. We were interested in two main devel- 
opmental questions. 

1. Do older participants tend to use math strategies that are 
consistent with range more than younger participants? To ad- 
dress this question we counted the number  of trials on which 
the participant used a math strategy consistent with range and 
subtracted the number  of trials where other math strategies 
were used. A one-way analysis of variance (ANOVA) on these 
scores showed a significant effect for grade, F(4 ,  111 ) = 24.21. 
As can be seen in Table 3, older participants tend to use math 
strategies that are consistent with range more often than youn- 
ger participants. Post hoc analyses show significant differences 

between the 8th and 1 l th  graders, F(  1, 47) = 12.01, and 1 l th 
graders and college-age students, F(  1, 57) = 5.57. 

2. Do older participants tend to use math strategies which 
have the appropriate effect of  quantity more than younger par- 
ticipants? To address this question, we counted the number  of 
trials on which a math strategy consistent with quantity was 
used and subtracted the number  of trials where other math 
strategies were used. The effect of  grade was significant, F(4 ,  
111 ) = 16.11. Older participants use math strategies that have 
the appropriate effect of  quanti ty more often than younger par- 
ticipants. Post hoc analyses show significant differences between 
8th and l l th  graders, F(1 ,  47) = 8.92, and l l th graders and 
college students, F(  1, 57 ) = 8.40. 3 

In summary, there is a developmental progression across 
grades towards using strategies that do not  violate range and 
that have the appropriate effect of  quantity. 4 

Relation Between Intuitive Understanding and 
Mathematical Strategy Groups 

Next, we consider whether the development of intuitive un-  
derstanding of the problem is related to developmental differ- 

3 In these analyses, we considered the use of unclassifiable strategies 
as instances of estimation because for most of these trials we were un- 
sure of how the participant arrived at an answer. Most of the trials that 
were unclassifiable involved a participant unsuccessfully attempting 
some math and then producing an answer that appeared unrelated to 
the math. It seems likely that this reflects estimation. 

4 The math strategies we observed for the elementary and high-sehool 
students were very consistent with the math strategies which their teach- 
ers reported had been taught. Second graders had been taught addition 
and subtraction. Fifth graders had additionally received some instruc- 
tion on averaging. Eighth graders had been instructed more thoroughly 
on averaging. Eleventh graders had received some instruction on 
weighted averaging. 
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Table 2 
Types of Mathematical Strategies 

Strategy type Strategy 

Ignore Quantity-Range Violated 

Inappropriate Quantity-Range 
Violated 

Ignore Quantity-Range Not 
Violated 

Appropriate Quantity-Range Not 
Violated 

- Add initial and added temperatures. 
- Subtract initial and added temperatures. 

- Add initial and added temperatures and quantities. 
- Add temperature once for each quantity unit. 
- Multiply quantity by temperature (for added, initial, or both). 

- Unweighted averaging. 

- Weighted averaging. 
- Take difference between higher and lower temperature. Add 

proportion of that distance on to lower temperature. 
Proportion determined by quantity. 
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ences in generating mathematical strategies. If intuitive under- 
standing is related to generating mathematical strategies, then 
participants using different mathematical strategies should have 
different intuitive understanding, as reflected in the partici- 
pants' principle scores from the intuitive condition. 

To test this hypothesis we grouped participants according to 
the math strategy they used on Unequal Quantity-Unequal 
Temperature trials. These trials require consideration of both 
quantity and temperature as explained above. Seventy-three of  
the 116 participants (63%) used one or more of the math strat- 
egies listed in Table 2 on Unequal Quantity-Unequal Tempera- 
ture trials. Of the remaining participants, 18% estimated on all 
numerical trials (N = 21 ). About 9% estimated only on Une- 
qual Quantity trials (N - 10). An additional 12 participants 
( 10% ) used a math strategy that was unclassifiable. 

Interestingly, most (82%) of the 73 participants who used one 
or more math strategies from Table 2 used strategies that came 
from a single classification. That is, although a participant may 
have used more than one strategy, all the strategies he or she 
used were from one of the four types described above (e.g., Ig- 
nore Quantity-Violate Range). The remaining 13 participants 
(18%) who used more than one type of  strategy were considered 
part of the lesser strategy group. 5 

Predicted principle score patterns. If participants use intu- 
itive understanding to guide the generation of  mathematical 
strategies, then participants who use math strategies that violate 
a principle should show poorer understanding of that principle 
than participants who use math strategies consistent with that 
principle. Therefore, participants whose math strategies violate 
Range (those in the Ignore Quantity-Violate Range and Inap- 
propriate Quantity-Violate Range groups) should show poorer 
understanding of Range, Above-Below, and ETE than partici- 
pants whose math strategies do not violate Range (those in the 
Ignore Quantity-Not Violate Range and Appropriate Quan- 
tity-Not Violate Range groups). Strategies that violate Range 
also violate Above-Below on half the relevant trials and ETE on 
all the relevant trials. Participants whose math strategies violate 
Crossover (those in the Ignore Quantity-Violate Range, Inap- 
propriate Quantity-Violate Range, and Ignore Quantity-Not 
Violate Range groups) should show poorer understanding of  
Crossover than participants whose math strategies are consis- 

tent with Crossover (those in the Appropriate Quantity-Not 
Violate Range group). 

Intuitive principle scores by strategy group. Figure 2 shows 
the mean intuitive principle scores for each mathematical strat- 
egy group. As predicted, the two groups whose math strategies 
violate Range (Ignore Quantity-Violate Range, n = 25, and In- 
appropriate Quantity-Violate Range, n = 12) have lower prin- 
ciple scores for Above-Below, Range, and ETE than the two 
groups whose math strategies do not violate Range (Ignore 
Quantity-Not Violate Range, n = 12, and Appropriate Quan- 
tity-Not Violate Range, n = 24): for Above-Below, F( l, 71 ) = 
14.80; for Range, F( l, 71 ) = 52.83; and for ETE, F( l, 71 ) = 
55.77. Also as predicted, the three groups whose math strategies 
violate Crossover (Ignore Quantity-Violate Range, Inappropri- 
ate Quantity-Violate Range, Ignore Quantity-Not Violate 
Range) have a lower principle score for Crossover than the 
group whose math strategies are consistent with Crossover 
(Appropriate Quantity-Not Violate Range), F( l, 71 ) = 13.95. 

Thirty-seven percent of  participants did not fit into the math- 
ematical strategy groups presented above. However, the perfor- 
mance of  these participants on the numerical task is also con- 
sistent with their intuitive understanding. They form three 
groups, which are presented in Figure 3. First, participants us- 
ing an Unclassifiable mathematical strategy (n = 12) had mean 
principle scores suggesting good understanding of  the domain. 
However, because their math strategies are unknown, little can 
be concluded about the relation between intuitive understand- 
ing and mathematical strategies. Second, Estimate All Trials 
participants (n = 21 ) estimated on all the trials and also had 
good understanding of  the domain. The relatively good intuitive 
understanding of  these participants is consistent with the possi- 
bility that they were using estimation as a backup strategy be- 
cause they could not generate appropriate math strategies. The 
third group, Estimate If Unequal Quantities (n -- 10), esti- 

5 We grouped these 13 participants by the lesser of their two strategies 
because of the possibility that understanding of the task might improve 
while trying to generate a math strategy. It seemed possible that in trying 
to come up with a math strategy participants might, perhaps through 
analogy with other tasks, reach a better understanding of the principles. 
Grouping participants by the better of the two strategies or by the type 
of strategy they use more often does not change the results substantively. 
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Table 3 
Mean Percentage of Math Strategy Group by Problem Type for Each Grade 

Grade 

Strategy 

2nd 5th 8th 11 th College 

UQ/UT EQ/UT ET UQ/UT EQ/UT ET UQ/UT EQ/UT ET UQ/UT EQ/UT ET UQ/UT EQ/UT ET 

Ignore Quantity- 
Range Violated 41 45 39 15 29 10 9 16 3 5 0 l 1 0 0 

Inappropriate 
Quantity-Range 
Violated 18 23 21 22 16 16 23 24 29 2 2 0 0 0 0 

Ignore Quantity- 
Range Not 
Violated 0 0 0 1 I 1 t I 18 3 9 33 6 8 22 0 

Appropriate 
Quantity-Range 
Not Violated 0 0 0 0 0 0 4 5 2 18 21 0 47 38 13 

Estimate-Other 41 32 40 61 54 73 57 37 63 66 44 93 44 40 87 

Note. UQ/UT = trials with unequal quantities and unequal temperatures; EQ/UT = trials with equal quantities and unequal temperatures; and ET = trials with equal 
temperatures, regardless of quantity. 

mated on all trials on which the quantities were not equal. These 
participants were divided into two subgroups (shown in the 
right two columns of Figure 3) depending on what type of math 
they used on Equal Quantity trials. On Equal Quantity trials, 7 
participants used math that did not violate Range, and 3 used 
math that did violate Range. The Range principle score was 
significantly different for these two groups, in spite of their small 
number, F (1 ,4 )  = 47.05, p < .01. 

The pattern of the mean intuitive principle scores for the nu- 
merical strategy and estimation groups is consistent with the 
hypothesis that there is a relation between intuitive understand- 
ing and generating mathematical strategies. Developmental 
differences in math strategy use are related to developmental 
differences in understanding the principles. 

Individualanalyses. Although the analysis of the subgroups 
presented above shows a relation between the development of 
intuitive understanding and generating math strategies, we were 
also interested in the nature of the relation. Therefore, we ex- 
amined individual performance by comparing each partici- 
pant's understanding of each principle with the type of math 
strategy they used. Figure 4 shows the observed frequency of 
participants who either understood or did not understand a 
principle and whether their math strategies violated the princi- 
ple. Understanding a principle was defined as having at least 
75% of the maximum score for that principle. Participants who 
estimated on all relevant numerical trials are also shown. For 
each principle we considered math strategies from all problem 
types where the principle was applicable. 6 As mentioned above, 
the majority of participants using math used a strategy or strat- 
egies from a single classification. The few participants who used 
strategies from more than one classification were considered to 
have used the lesser strategy (see Footnote 5). 

The upper left-hand panel of Figure 4 shows the results for 
the Range principle. The vast majority of participants who used 
a math strategy that was consistent with Range understood 
Range. Similarly, most participants who estimated on all the 
trials where Range was relevant also understood Range. Partic- 
ipants who used a math strategy that violated Range showed a 
very different pattern. Some of these participants understood 

Range, whereas others did not. The observed distribution is 
very unlikely under the hypothesis of no association, x 2 (2, N = 
109) = 39.19,p < .0001. 

A very similar pattern is seen for the Crossover principle in 
the lower left-hand panel of Figure 4. This distribution of par- 
ticipants is also very unlikely under a hypothesis of no associa- 
tion, ×2(2, N = 104) = 9.79,p < .008. 

The results for the Above-Below principle are difficult to 
interpret because almost all participants understood the princi- 
ple. The distribution of participants across cells is not signifi- 
cantly different from what might be expected under a hypothe- 
sis of no association, × 2 ( 2, N = 109) = 5.32, p < .07. 

The results of the ETE principle are in the lower right-hand 
panel of Figure 4. Almost all participants who used math strat- 
egies consistent with this principle understood the principle. 
Similarly the majority of participants who estimated on equal- 
temperature trials understood ETE, although the proportion is 
not as large as for the other principles. Most participants who 
used a strategy that violated ETE did not understand the prin- 
ciple. The observed distribution is very unlikely under a hy- 
pothesis of equal proportions, ×2(2, N = 112) = 29.67, p < 
.0001. 

In summary, we see two interesting results in the relation be- 
tween understanding the principles and math strategy use. First, 
some participants who understood the principle used strategies 
that violated the principle, and others used strategies consistent 
with the principle. Second, extremely few participants who did 
not understand a principle used a strategy consistent with it 
(only 3 participants over all principles). It appears that under- 
standing a principle is necessary but not sufficient to generate a 
math strategy consistent with that principle. Interestingly, for 
three of the principles, participants who estimated on all rele- 

6 For the Above-Below and Range principles, math strategies that 
occurred on both Equal Quantity-Unequal Temperature and Unequal 
Quantity-Unequal Temperature problems were used. For Crossover, 
math strategies that occurred on Unequal Quantity-Unequal Temper- 
ature problems were used. For the ETE principle, math strategies that 
occurred on Equal Temperature problems were used. 
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Figure 2. Mean percentage intuitive principle scores plotted as a function of mathematical strategy group 
with a separate curve for each principle. Inapp. = inappropriate; Appro. = appropriate; Temp's = 
temperatures. 

vant trials showed a similar pattern to participants who used a 
math strategy consistent with the principle. This suggests that 
these participants may have been choosing to estimate because 
they could not generate a math strategy consistent with their 
understanding of  the domain. 

Evidence for the Necessity and Insufficiency of Intuitive 
Understanding Across Developmental Levels 

The analyses of Figure 4 aggregated over age groups suggest 
that understanding a principle is a necessary but not sufficient 
condition to generate a math strategy consistent with that prin- 
ciple. We a re  interested in whether we have evidence of  both 
the necessity and insufficiency of  understanding a principle for 
generating an appropriate math strategy at different develop- 
mental levels. Evidence for the necessity of  understanding a 
principle would come from a pattern where extremely few par- 
ticipants who did not understand the principle used a math 
strategy consistent with it. Of course, in order to assess this re- 
lation we must observe variability within the age group in both 
understanding the principles and the type of  math strategy used. 
Evidence for the insufficiency of  understanding a principle 
comes more simply from the presence of  participants who un- 
derstood the principle but did not use a math strategy consistent 
with it. 

For the 2nd graders, we have evidence of  the insufficiency of  
understanding a principle for generating a math strategy consis- 
tent with that principle. Across the four principles, an average 
of  41% of  the 2nd graders understood a principle but did not 
use a math strategy consistent with it. 

There is evidence for both the 5th and 8th graders that under- 
standing a principle is necessary to generate an appropriate 
math strategy but that understanding a principle is not suffi- 
cient. For these two age groups very few participants used a 
math strategy that was consistent with a principle they did not 

understand, an average of  1% and 3% for 5th and 8th graders, 
respectively. This result is interpretable because a mean of  6% 
of  5th graders and 16% of  8th graders used a math strategy that 
was consistent with a principle they understood. Also, a mean 
of  26% and 24% of  5th and 8th graders did not understand a 
principle and used a math strategy that violated that principle. 7 

The 5th and 8th graders also provided evidence that under- 
standing a principle is not sufficient. Across principles, an aver- 
age of  38% of  5th graders and 25% of  8th graders used a math 
strategy that violated an understood principle. The 11 th graders 
and college students also provided evidence of  the insufficiency 
of  understanding a principle. Across principles, a mean of  12% 
and 6% of  I l th graders and college students, respectively, used a 
math strategy that violated a principle they understood. 

In summary, all age groups contributed evidence that sug- 
gests that understanding a principle is not sufficient to generate 
a math strategy consistent with that principle. However, be- 
cause evidence for the necessity of  understanding a principle 
requires variability in understanding the principles and in math 
strategy types, only the 5th and 8th graders provided evidence 
of  necessity. 

Modeling the Contribution of Intuitive Understanding 
and Age on Mathematical Strategy Choice 

One interpretation of  the observed relation between intuitive 
understanding and mathematical strategies is that because both 

Because fifth and eighth graders had very similar understanding of 
the principles and showed a very similar relation between understand- 
ing a principle and math strategy use, we considered them as a single 
group to increase statistical power. When fifth and eighth graders are 
classified by understanding of each principle and by the type of strategy 
they used (violated the principle, did not violate the principle, esti- 
mated all relevant trials), there is a significant relation for Range, X 2 (2, 
N = 42) = 8.89,p < .02, and ETE, X2(2, N= 43) = 7.03,p < .03. 



250 D I X O N  A N D  M O O R E  

O 
O 

~0 
ID 

D_ 

¢- 

100 

90 

80 

70 

60 

50 

40 

3 0  

20 

10 

0 

Intuitive Principles 

• Above-Below 

O ~  Range 
Crossover 

K Equai-Temp's-Equal 

i 

Unclassifiable 
! ' i i 

Estimate All Trials / Range Not Violated Range Violated 

Estimate on Unequal  Quanti ty Tnals  

Group 

Figure 3. Mean percentage principle scores plotted for unclassifiable and estimation groups with a sepa- 
rate curve for each principle. Participants who estimated on unequal quantity trials (right-hand columns) 
are shown as two groups based on whether their math strategies on equal quantity trials violated Range. 
Temp's = temperatures. 

are related to age or grade, the observed relation is spurious. 
According to this argument, intuitive understanding does not 
directly affect mathematical strategy choice. Rather, they only 
appear to be linked because both develop with age. As evident 
in Figure 1 and Table 3, both intuitive principle scores and 
mathematical strategy choice are correlated with grade. Are in- 
tuitive principle scores related to mathematical strategy choice 
when grade is statistically controlled? To model the contribu- 
tions of grade and each intuitive principle score in predicting 
math strategy choice, we performed four stepwise logistic re- 
gressions. Logistic regression was used because the dependent 
variable (i.e., whether or not a math strategy was consistent 
with the principle) is dichotomous and standard multiple re- 
gression requires a continuous dependent variable (Engleman, 
1990). The results for logistic regression are interpreted sim- 
ilarly to multiple regression. 

In each regression we first entered grade and then entered an 
intuitive principle score to test for a significant contribution of 
the principle to predicting whether the participant's math strat- 
egy violated the principle or not. Participants whose math was 
unclassifiable or who estimated on all trials were not included 
in any regression analyses. For all intuitive principles, the prin- 
ciple score is a significant predictor of math strategy choice after 
the effect of grade is partialled out: for Above-Below, b = .  14, 
x2( 1 ) = 5.26; for Range, b = .06, X2( 1 ) = 7.00; for Crossover, 
b = .03, x2( l )  = 5.02; and for ETE, b = .07, x2( l )  = 6.12. 
These results show that, whereas grade is correlated with both 
the intuitive principle scores and math strategies, there is a re- 
lation between the intuitive understanding and math strategy 
choice that is not accounted for by grade alone. 

Discussion 

The first goal of the present study was to measure intuitive 
understanding of the temperature mixture task and to examine 

whether the proposed principles were used in generating math. 
Recall that the principle scores were derived from the response 
pattern in the intuitive condition, but that the references to 
principles were recorded in the numerical condition while par- 
ticipants were attempting math. The spontaneous verbalization 
of the principles supports the hypothesis that they are used in 
choosing math strategies. Some participants described the prin- 
ciples aloud as they attempted to generate the appropriate math. 
Participants who mentioned a principle tended to have higher 
scores for that principle in the intuitive task and their scores 
had significantly less variability. These results suggest that the 
principle scores may measure the same knowledge that partici- 
pants spontaneously verbalized. However, it also may be that an 
underlying representation that does not consist of principles is 
responsible for both the pattern of judgments in the intuitive 
condition and the verbalizations in the numerical condition. 
The question of the nature of the intuitive representation is im- 
portant if one accepts the possibility that there might be a map- 
ping process taking place between intuitive understanding of  the 
domain and mathematical strategies. The prospect of  a map- 
ping process is discussed later. 

Understanding of the principles and the sophistication of the 
math strategies both develop with age. As a group, 2nd graders 
tend to understand the domain quite poorly. Fifth and 8th grad- 
ers show better understanding of the principles, although the 
8th graders' understanding is not significantly better than that 
of the 5th graders. The 1 lth-grade and college-level students un- 
derstand all the principles at near ceiling levels. There is consid- 
erable variability in understanding the principles within age 
groups, especially for the 2nd, 5th, and 8th graders. 

There are also developmental d, ifferences in generating math- 
ematical strategies. Second graders use math strategies that vio- 
late the Range principle. Similarly, 5th graders most often use . 
math strategies that violate Range. Eighth graders use strategies 
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Figure 4. Frequencies of participants by math strategy and intuitive understanding. The four math strat- 
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lated; (2) Inappropriate Quantity-Range Violated; (3) Ignore Quantity-Range Not Violated; (4) Appro- 
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of the 5th graders. The 11 th-grade and college-level students un- 
derstand all the principles at near ceiling levels. There is consid- 
erable variability in understanding the principles within age 
groups, especially for the 2nd, 5th, and 8th graders. 

There are also developmental differences in generating math- 
ematical strategies. Second graders use math strategies that vio- 
late the Range principle. Similarly, 5th graders most often use 
math strategies that violate Range. Eighth graders use strategies 
that violate Range as well but also use strategies consistent with 
Range and a few use strategies that have the appropriate effect 
of quantity. The 11 th-grade and college students predominantly 
use strategies that do not violate Range and also use strategies 
that have the appropriate effect of  quantity. 

The second goal of the study was to examine whether the de- 
velopmental differences in intuitive understanding of  the do- 
main were related to developmental differences in generating 
mathematical strategies. The verbal referencing of principles 
while generating math strategies suggests that there may be a 
relation between understanding the principles and math strat- 
egy generation. Further evidence comes from the pattern of 
mean intuitive principle scores for the mathematical strategy 
groups. The mean principle scores showed that participants 
who used different types of  strategies had very different intuitive 
understandings of  the task. The relation was systematic and 
consistent with the hypothesis that the development of  intuitive 
understanding is an important factor in generating math strate- 
gies. By measuring intuitive understanding at a relatively fine 
grain, as is accomplished by the intuitive principle scores, the 
systematic relation between the development of  intuitive under- 

standing and formal strategies becomes evident. Likewise, par- 
ticipants who systematically estimated on particular trials ap- 
peared to be doing so on the basis of what they understood 
about the task. 

Another explanation for the observed relation between intu- 
itive understanding and mathematical strategies is that both in- 
tuitive understanding and mathematical strategies are corre- 
lated with age and that the relation between intuitive under- 
standing and math strategies is then spurious. Contrary to this 
explanation, intuitive principle scores are related to math strat- 
egy choice when the effect of  grade is statistically controlled. 
This result is consistent with the hypothesis that participants 
use their intuitive understanding of  the task to select math 
strategies. 

Intuitive Understanding Is Necessary But Not Sufficient 

How participants use their intuitive understanding of  the task 
to select math strategies is an interesting question. When we 
compare each participant's understanding of  a principle with 
whether their math strategy was consistent with that principle, 
we see that understanding the principle seems necessary but not 
sufficient to arrive at a strategy consistent with that principle. 
We observed this relation despite the fact that participants al- 
ways completed the intuitive task before the numerical task and 
received instructions linking the two tasks. 

The conclusion that understanding a principle is necessary 
but not sufficient to generate a math strategy consistent with 
that principle has an important developmental implication: 
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The development of understanding of  the problem domain con- 
strains the development of  formal problem solving in that do- 
main. If a child must understand a principle of a domain in 
order to generate a math strategy consistent with that principle, 
then the development of understanding the principles sets an 
upper bound on the math strategies the child will spontaneously 
use. A child will not use a formal solution strategy that repre- 
sents the problem better than the principles he or she un- 
derstands. For example, a child who has not yet developed an 
understanding of the Crossover principle for temperature mix- 
ture will not generate weighted averaging for temperature mix- 
ture problems. Of course, this does not imply that a child could 
not be taught to apply any math strategy to a problem. Clearly, 
a child who did not understand the Crossover principle could 
be taught to perform weighted averaging for a specified problem 
(although it would be interesting to see if differences in under- 
standing the principles would contribute to remembering in- 
structed solution strategies). The point here, however, is that 
intuitive understanding sets an upper bound for generating so- 
lutions in novel or uninstructed domains, the situation usually 
referred to as problem solving. 

How Is Intuitive Understanding Used in Math 
Strategy Generation? 

The finding that understanding a principle is a necessary but 
not sufficient condition for generating a math strategy consis- 
tent with that principle suggests that participants perform a 
mapping process between what they understand about the task 
and what they understand about different math strategies 
(Gentner, 1983). That is, participants may take the principles 
they understand about the task and search for math strategies 
that instantiate those principles. Our results are consistent with 
the mapping hypothesis in two ways. First, if participants are 
performing some sort of  mapping between intuitive under- 
standing and math strategies, it seems likely that partial 
matches, matches based on sharing some attributes but not all, 
would often be selected. For example, consider a 2nd grader 
whose understanding of the task can be summarized as "com- 
bining things (i.e., both temperatures and amounts) gives you 
more." Given this understanding of the task, addition of the 
temperatures provides a partial mapping. A more complete 
mapping would involve the amounts as well. A major part of the 
mapping process must be determining which variables require 
inclusion in the math strategy. Therefore, it is not surprising 
that many participants use partial matches, and they select 
math strategies that violate an understood principle. 

The second reason our pattern of results fits the mapping hy- 
pothesis is that math strategies almost never represent the prob- 
lem better than the participant's intuitive understanding. For 
example, consider an 8th-grade participant who does not un- 
derstand the Range principle. (The mean Range principle score 
for 8th grade was around 75%, so a good number of  them did 
not understand Range.) One might expect that he or she could 
arrive at averaging as a math strategy through the association of  
words in the task (e.g., combine) with past words from math 
problems (35% of 8th graders did use averaging of some type). 
However, this does not happen. With only two exceptions, par- 
ticipants who used some sort of averaging scheme (i.e., math 
strategies that do not violate Range) understood Range. There- 

fore, at an individual level, the results are consistent with the 
hypothesis that participants use their intuitive understanding in 
a mapping process to arrive at a math strategy. 

Similar to most work in which complex knowledge structures 
are presumed to profoundly influence performance (e.g., Chi, 
Feltovich, & Glaser, 1981; Chi et al., 1982; Cummins et al., 
1988; Glenberg & Epstein, 1987; Larkin et al., 1980; Simon & 
Simon, 1978), we did not attempt to manipulate the partici- 
pant's knowledge structure. Our present measurement of intu- 
itive knowledge, as opposed to manipulation of it, does not al- 
low us to make conclusions about a causal role in selecting 
mathematical strategies. However, results from past work sup- 
port a causal interpretation of  intuitive understanding. Ahl et 
al. (1992) showed that performing the intuitive task before the 
numerical task improved performance on the numerical task 
for some age groups. However, performing the numerical task 
first did not improve performance on the intuitive task. Hardi- 
man et at. (1984) found that giving feedback to participants 
on their judgments of whether a balance scale would tilt or 
remain level improved performance on numerically presented 
weighted averaging problems. Hardiman et al.'s (1984) results 
show that enhancing intuitive understanding through training 
improves performance on numerical problems. 

The results of our study, taken with the results of Ahl et al. 
(1992) and Hardiman et al. (1984), offer a first step toward a 
theory of how intuitive understanding affects the generation 
of  formal representations. The pattern of results suggests that 
individuals may be performing a mapping between their intu- 
itive understanding and their representation of formal math 
strategies. The nature of the representations of both the intu- 
itive understanding and math strategies needs to be investi- 
gated. Also, the details of how the mapping occurs between the 
intuitive representation and the formal representations needs 
to be explored. 

The present study shows that developmental differences in 
understanding the principles of a domain play a central role in 
explaining developmental differences in math strategies. How- 
ever, if individuals use a mapping process between intuitive un- 
derstanding and math strategies to select math strategies, then 
there are other potential sources of  developmental change. 
There may be developmental differences in the richness of for- 
mal strategy (i.e., math) representations. For example, college 
students may have an elaborate understanding of what multi- 
plication does compared to eighth graders. The sophistication 
of the formal representation should have a large effect on the 
goodness of the math solution. If younger individuals have an 
impoverished representation of how math strategies work, then 
they will not be able to discriminate appropriate math strategies 
from inappropriate ones on the basis of a match to intuitive 
understanding. There also may be developmental change in the 
mapping process itself. For example, younger individuals may 
be more likely to select math strategies on the basis of partial 
matches. Older individuals may be more likely to use the un- 
derlying structure of the problem in the mapping process. 

An interesting aspect of our results is that individuals some- 
times use strategies that violate their intuitive understanding. 
Presumably, use of a strategy that violates an intuitively un- 
derstood principle might prompt generation of a new strategy. 
It would be interesting to examine this process in more detail. 
Siegler and Jenkins (1989) showed that new strategy construc- 
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tion for addition in very young children may require a large 
number of  trials. The process of  new strategy construction for a 
complex task such as temperature mixture may be accelerated 
for older individuals because their repertoire of  strategies is 
larger and they may not have to construct a new strategy from 
scratch. 

The present study shows that the development of intuitive un- 
derstanding and developmental differences in the generation of 
mathematical strategies are closely related. We present a first 
step toward a theory of how intuitive understanding affects the 
generation of formal representations. Future work will show 
whether the pattern of  results observed here holds for strategy 
generation in other domains. The temperature mixture task, 
however, is quite similar to word problems used in math texts 
and encountered in real world situations. Important  steps to- 
ward a complete theory of the relation between intuitive under- 
standing and the generation of  mathematical strategies will in- 
clude understanding the nature of the intuitive representations 
and the nature and development of  formal strategy representa- 
tions. When both the intuitive and formal representations are 
delineated, the development of  the mapping process between 
the two representations can be studied. 
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