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MaoRE, COLLEEN F.; Dixon, JaMES A.; and Haines, BETH A. Components af Understanding in
Proportional Reasoning: A Fuzzy Set Representation of Developmental Progressions. CHILD
DevELOPMENT, 1991, 62, 441-459. The development of proportional reasoning was examined
using a temperature mixture task. Each individual’s task understanding was assessed by compo-
nents measuring understanding of various principles of the task. Age difterences were found
in the mean component scares. Mare important, different patterns of components were found
depending on whether the task was presented numerically ar nonnumerically. Compaonent pat-
terns also depended on whether the task was presented such that subjects predicted the outeame
of combining 2 cantainers of water at different temperatures (prediction task) or such that subjects
inferred | of the 2 initial temperatures given the final temperature (reverse task). The results
show the importance of distinguishing between intuitive knowledge and formal computational
knowledze of proportional concepts and provide a new perspective on how intuitive and compu-
tational knowledge are related during development. Finally, the results also led to a new concep-
tualization of developmental levels as categaries with fuzzy boundaries. Under this conceptual-
ization, individuals can have different degrees of membership in “fuzzy developmental levels.”
This new concept preserves individual differences but also describes the sequence of devel-

opment,

The problem of individual differences
has been ever-present and bothersome in
research on cognitive development (Cron-
bach, 1957; Kessen, 1960; Langer, 1970;
Wohlwill, 1973), and the problem continues
to receive attention (Kerkman & Wright,
1988; Siegler, 1987; Wilkening, 1988). In the
present research, we provide a new ap-
proach to two related problems: How can we
describe individual differences in develop-
ment and, simultaneously, how can we de-
scribe the structure of development? First,
we present a new model for proportional
reasoning tasks, the “components of under-
standing’’ model, which is oriented specifi-
cally toward assessment of the individual’s
understanding. Second, we outline a new
methaod for representing developmental pro-
gressions using Zadeh'’s (1965} fuzzy set con-
cept. Using analyses of the individual pro-
files of component scores, we use the fuzzy

set concept to show that individual differ-
ences and developmental progressions can
be described simultaneously.

The components of understanding ap-
proach is an extension of prior approaches
to characterizing individual differences in
prablem solving (Norman & Schemmer,
1977; Reed & Evans, 1987; Surber, 1980,
1984). Using primarily the ordipal features
of each individual’s data pattern, the ap-
proach provides measures of the subject’s
understanding of the principles by which
the variables in a task are related. The first
goal of our research was to characterize the
development of proportional reasoning in
terms of components, which are given be-
low. In our experiment, subjects made judg-
ments about the temperature of a container
of water produced by combining two quanti-
ties of water differing in temperature (see
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Noelting, 19802, 1980b, and Strauss & Stavy,
1982, for similar tasks). Based on research on
other proportional reasoning tasks (Ferretti,
Butterfield, Cahn, & Kerkman, 1985; Reed
& Evans, 1987, Siegler, 1976, 198]; Surber
& Gzesh, 1984; Wilkening, 1981), there
should be developmental differences in ac-
quisition of the components. We expected
that children would first understand the rela-
tions between the temperature of the added
water and the final temperature (represented
by components called main effect and mo-
notonicity) and only later understand the
interaction of added quantity with added tem-
perature (represented by the crassover com-
ponent).

A review by Surber and Haines (1987)
showed that previous literature on propor-
tional reasoning failed to distinguish be-
tween tasks that involve estimation or in-
tuition and tasks that involve explicit
caleulation. Thus, a second goal of our re-
search was to examine the development of
the components of understanding when the
task is presented in a way such that it re-
quires estimation (i.e., no numerical mea-
sures of the variables are given) versus when
the task is presented with numbers and sub-
jects are encouraged to compute answers
explicitly. We expected that components
would he understood initially at an intuitive
level, as shown on an estimation task, and
only later would understanding of the same
components be expressed computationally
(Hammond, Hamm, Grassia, & Pearson,
1987; Surber & Haines, 1987). For example,
a person knows by experience that the
higher the temperature of the added water,
the higher the final temperature will be.
Hawever, translating such knowledge into a
computational scheme is a complex task.

A third goal of the present study was to
examine the development of reversible ap-
erations in the context of the temperature
task. In the prediction task, each subject was
asked to predict the final temperature, given
the temperature and quantity of one beaker
{refetred ta as the “standard™) which always
contained water of constant quantity and
temperature, and given the temperature and
quantity of a second beaker (called the
“added” water). Second, in the reverse task,
each subject was asked to infer the added
temperature, given the other values. The re-
verse task provides a measure of the com-
pleteness and flexibility of a person’s under-
standing of the companents. We expected to
find partial knowledge (Wilkinson & Haines,
1987} such that homelogous components of
understanding would he more advanced in

the prediction task as compared to the re-
verse task,

A fourth goal was to introduce and ex-
plore the utility of Zadeh's (1965} fuzzy set
concept for deseribing hoth developrental
levels and individual differences. Many de-
velopmental studies hypothesize that sub-
jects progress through a sequence of distinct
develaopmental levels of understanding for a
specific domain (Hook & Caok, 1979; Ker-
moian & Campos, 1988; Nicholls & Miller,
1984; Noelting, 1980a, 1980b; Selman &
Byrne, 1974; Siegler, 1981; Uzgiris & Hunt,
1975). Individuals are often classified dis-
cretely as members or nonmembers of de-
velopmental levels in spite of the fact that
there are individual differences in the de-
gree to which performance conforms to the
specified developmental level. In the fuzzy
set approach, each person bas a degree of
membership in a set, providing a quantita-
tive representation of individual differences
within developmental levels. We use the
term “fuzzy developmental level” to denote
a categorization of subjects according to
their degree of membership or goodness of
fit to a prototype response pattern. Thus, a
fuzzy developmental level is a category with
imprecise boundaries (Oden, 1977; Smith &
Medin, 1981). We hypothesized a set of pro-
totypes that describe distinet profiles or
structures of component scores for the pres-
ent task. Rather than examining only age
group differences, the fuzzy set approach
provides a way of grouping individuals with
similar profiles of component scores. Thus
the approach has the potential to reveal
structural developmental changes in a given
task domain without eliminating individual
differences.

Components of Understanding in the
Temperature Task

The components are easiest to explain
with reference to the specific design of this
experiment. The correct equation for salving
the temperature prediction task is: Tp =
(Q]_Tl + QZT?.)/(QL + 02), Where TF is the
final temperature, the ’s are quantities to
be combined, and the T's are the tempera-
tures to be combined. In both the prediction
and reverse tasks, the quantity and tempera-
ture of the standard container were fixed at
3 units of 40°. Across trials of the prediction
task, the temperature and quantity of the
added water were varied in a 5 x 5 factorial
design. The reverse task was designed anal-
ogously. Figure 1 presents the designs and
correct answers for the two tasks of our ex-
periment.
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Coarrect Answers

Prediction Task

Quantity

Final Temperaiura

Reverse Task

eunjesadia) pappy

20 3 0 50 60

Added Temperature

.,

L T
30 as 40 45 5

Final Temperature

Fie. 1.—Correct answers for the prediction and reverse task plotted as a function of added and
final temperature, respectively. Each curve represents a different quantity.

In research using acid mixtures, Reed
and Evans (1987) scored the degree to which
each individual’s responses indicated an un-
derstanding of three principles of mixture
tasks. We modified Reed and Evans's task
components to apply to temperature mix-
ture, and included three other components.
Thus, we scored six components of under-
standing that measure degree of mastery of
different properties of temperature mixture.
Same of our components are closely related,
measuring understanding at a coarse- versus
a fine-grained level. The initial level of un-
derstanding a component may be measured
best by the coarse-grained variable, but de-
velopmental refinements may require mea-
surement with a finer-grained variable.

Main effect component.—The main ef-
fect component is a coarse-grained measure
of understanding of the principle that the
higher the added temperature, the higher
the final temperature. To score main effect
in the prediction task, a person was given 1
point for each correct ordering of the judg-
ments based on the extreme added tempera-
tures {20° and 60°) at each added quantity.
One point was subtracted for each incorrect
ordering, and nothing was done for equal

judgments. The maximum and minimum
scores were +5 and —5. The reverse task
was scored analogously.

Monotonicity.—Monotonicity provides
a more fine-grained index of the understand-
ing that the higher the added temperature,
the higher the final temperature. In the pre-
diction task, 1 point was added to the mono-
tonicity score if the judged temperature
based on each added temperature -was
higher than the judged temperature for the
added temperature immediately below it,
holding quantity constant. One point was
subtracted for each incorrect ordering of
adjacent temperatures. The maximum and
minimum scores were +20 and —20, To
score highly on monatonicity, a person must
consistently judge final temperature so that
the order of responses is correct not only at
the extremes of added temperature but also
between each pair of temperatures. It is not
completely independent of main effect. In
the reverse task, monotonicity was scored
analogously.

Abouve-and-below.—This component in-
dexes the understanding that when two tem-
peratures combine, the resulting tempera-

! Reed and Evans (1987) used the term monotonicity to describe the relation between stimu-
lus quantity {(as a proportion of total quantity) and resulting acid coneentration. The temperature
and acid tasks are isomorphic if added and final temperature are analogous to initial and fAnal
acid concentration, and added quantity is analogous to the manipulated proportions. Thus, the
monotonicity principle of Reed and Evans is not analogous to either main effect ar monotanicity.
1t is closest to the component we call crossaver. Reed and Evans did nat measure any variables
gimilar to main effect, monotonicity, or above-and-below. Their other two components were

range and linearity.
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ture is always in the direction of the added
temperature. Far example, if the added tem-
perature were warmer than the standard,
then the final temperature would he above
that of the standard. The carrect answers in
Figure 1 show that in both the prediction
and reverse tasks, 10 of the responses in
each condition should be an each side of the
standard. The score an abave-and-below
ranged from 0 to 20; 1 point was added to the
score for each judgment in the apprapriate
region of the thermometer. The five given
temperatures that were equal to the standard
were ignored.

Range.—This component is directly
analagous to Reed and Evans’s {1987) range
component. [t is a finer-grained measure
than above-and-below in that it requires the
understanding that combining two tempera-
tures results in a final temperature that is
between them (i.e., within the range of the
two given temperatures). In the prediction
task, the range score was caleulated by
counting the number of responses that fell
between the added ternperature and the
standard temperature. In the reverse task,
the number of responses that fell between
the given final temperature and negative
infinity (for final temperatures below the
standard), or between the given final tem-
perature and positive infinity (for final tem-
peratures above the standard) were counted.
The five values of the added or final temper-
ature that were equal to the standard were
ignored. The minimum and maximum scores
were O and 20. The range component re-
quires that the person’s responses be cali-
brated nat onlv with respect ta the standard
but also with respect to the added tempera-
ture in the prediction task, ar the final tem-
perature on the reverse task.

Crossover —The crossaver component
is essentially an ordinal index of the under-
standing of the interaction of quantity and
temperature. Crossover was computed by
checking the ordering of the responses to the
twa extreme quantities at each added tem-
perature (for the prediction task) or at each
final temperature (for the reverse task). One
point was added to the crossover score for
each correct ordering, and 1 point was sub-
tracted for each incorrect ardering. The
scares ranged from 4 to —4. The crossover

component requires understanding the di-
rection of change the added temperature
causes, and that increasing the quantity of
added water increases the change. For ex-
ample, adding 5 cups of hot water would re-
sult in warmer water than adding 1 cup of
hat water to the same standard.

Linearity.—The linearity component is
also taken from Reed and Evans (1987). This
component indexes the degree to which the
person understands that equal changes in
temperature are equal in effect regardless of
their position on the temperature scale. For
example, the change in added temperature
from 40° to 50° has as much effect as the
change fram 50° to 60° for a given quantity.
Linearity was computed by taking the vari-
ance of the differences of the judgments be-
tween successive given temperatures for
each quantity. The linearity score increases
with deviations from linearity, with an upper
limit of positive infinity and a lower limit of
zero.?

Several aspects of our approach are wor-
thy of note. First, in contrast to much devel-
opmental research, we have not set cutoffs
for “passing” or “failing” a given compo-
nent. The components are graded variables
that measure the degree of understanding,
The vast majority of developmental studies
that have examined the arder of acquisition
of aspects of a concept have categorized in-
dividuals into discrete levels of develop-
ment; examples include the object concept
or search literature {Jackson, Campos, &
Fischer, 1978; Kermoian & Campos, 1988;
Uzgiris & Hunt, 1975}, canservation {Brain-
erd, 1973, 1977), proportional reasoning
(Noelting, 1980a, 1980h; Siegler, 1976,
1981}, and the functional measurement ap-
proach in which individuals are classified
as using particular information-integration
rules if certain criteria are met (Anderson &
Butzin, 1978; Kun, Parsons, & Ruble, 1974;
Surber, 1984). The purpose of such discrete
classifications is to capture the develop-
mental ardering of skills that are likely to be
ahscured by age group means. However, a
number of methodological problems in de-
termining the developmental ordering of
skills from either discrete classifications or
dichotomized variables have been discussed
elsewhere {Brainerd, 1977; Coombs, 1964;

?Reed and Evans {1987} assessed linearity by using Pearson’s r. Pearsan’s r is insensitive
to deviations from linearity as [ong as there is a strictly monotonic relation hetween twao variahles.
Insensitivity to nonlinearity can be demaonstrated by calculating the r between a set of integers
and their squares, square raots, or logs. In contrast, the variance of successive differences is

sensitive to deviations from linearity.



Flavell, 1971, Wohlwill, 1973). In addition,
once individuals are categorized into devel-
opmental levels on a task, individual differ-
ences within category are often ignored. The
use of discrete categories of developmental
levels can lead researchers inadvertently to
consider development to be a more saltatory
process than it actually is. We are hopeful
that the fuzzy set approach will lead to a
more thorough description of development
than that vielded by only age group analyses
or by discrete categorization of levels of de-
velopment. The fuzzy set approach allows
discrete categorization into developmental
levels, examination of individual differences
within developmental levels, and the de-
seription of developmental sequences that
invalve multiple paths.

Method

Subjects

Two hundred subjects from four grade
levels participated: 42 secand graders (mean
age = 8.25 years, SD = 4.75 months), 40
fifth graders (mean age = 11.22 years, SD =
5.02 months), 48 eighth graders (mean age
= 13.65 years, SD = 7.02 months), and 70
college students {mean age = 19.73 years,
SD = 3.1 years). Second and fifth graders
received small tays or stickers to thank them
for participating. College students received
extra credit points. In addition to thase who
completed the experiment, one eighth
grader and two college students were elimi-
nated hecause they were unavailable for the
secand session.

Appraximately one-half of each age
group was randomly assigned to each condi-
tion of the experiment (N's = 22, 20, 23, 32
in the intuitive condition for second grade
through college). Within age group and con-
dition, approximately one-half were ran-
domly assigned to the prediction task first
{intuitive condition N's = 11, 10, 12, 15, and
computational condition N's = 10, 10, 13,
20 for second grade through college) or the
reverse task first. The proportion of males
and females was approximately equal for
each age group and across conditions.

Materials and Design

The stimuli in the computational and in-
tuitive conditions were identical except that
numbers were added to the display and used
verbally in the computational conditien,
whereas qualitative terms described the
temperatures in the intuitive condition. The
stimuli were two felt-board beakers, approx-
imately 12 x 16 inches in size. Blue felt rep-
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resented different quantities of water that
could be attached to “fill” the heakers. One
of the beakers had a handle and spaout that
the experimenter used to simulate pouring.
The schematic thermometers stood 16
inches high. The ends of the thermometers
were labeled with a drawing of a fire and a
snowman to symbolize very hot and very
cold, respectively. A movable marker was
used to delineate different ternperatures. In
the computational condition, the thermo-
meters were labeled from 0 to 80 in 3°
increments. In the intuitive condition, the
thermometers were not graduated. Two
thermometers were used to represent the
twa temperatures that were being com-
bined.

The designs for the prediction and re-
verse tasks were 5 (added or final tempera-
ture) x 5 (quantity of added water) factorial,
and are presented in Figure 1 with the cor-
rect answers. In the computational condi-
tion, temperature values were given numeri-
cally on the thermometers and verhally
by the experimenter, and the numbers 1
through 5 were affixed to arbitrary equal-
interval units of the felt representing the wa-
ter. For both tasks, the values of the standard
temperature and guantity were fixed at the
midpoint of the thermometer (40° or “me-
dium’) and at approximately the one-third
full point (3 units) of the beaker, respec-
tively.

Procedure

Subjects were tested in twa sessions,
one for each task. The 25 stirnuli for each
task were presented in one of six random
orders approximately counterbalanced acrass
age and condition. The standard beaker was
designated as the subject’s, and always con-
tained 3 units of water at 40°, or “medjum.”
Subjects in the computational condition
were also given paper and pencil and the
experimenter said, “Try to use math to figure
out the temperature. You can use the paper
and pencil to help you.” In the intuitive con-
dition, neither the quantities nor the temper-
atures were labeled numerically. Instead,
the temperatures of water were described as
very hot {60%), hot (30°), medium {40°), cold
{30°}, or very cold (20°), with the marker on
the thermometer without numbers adjusted
to the same position as in the numerical task.
To designate the quantity in the intuitive
condition, the experimenter said, “this much
water’’ and put it an the felt-board.

For the prediction task, the experi-
menter’s heaker varied in the 5 x 5 design.
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The subject was reminded that his or her
heaker always started with the same amount
of water {or 3 units) of the same temperature
(medium, or 40°), but that the experimenter's
water changed on each trial. The experi-
menter then pretended to pour her water
into the subject’s beaker and moved the felt
strip onto the suhject’s beaker. The subject
was asked to adjust his or her thermometer
to show what the temperature of all the wa-
ter together would be. In the reverse task,
the experimenter first adjusted the subject’s
thermometer to show the final temperature
after adding a certain quantity of water from
the experimenter’s beaker. The subject was
asked to figure out the temperature of the
experimenter's water prior to it combina-
tion with the subject’s, and to adjust the ex-
perimenter’s thermometer accordingly.

Subjects received five practice trials at
the beginning of each task. Following the
experimental trials, subjects were asked to
explain how they figured out their answers,
and were given a short arithmetic test.

Results

Age Group Analyses: Developmental
Functions for Components

Figure 2 presents the mean component
scores for each grade, condition, and task
combination. To facilitate comparison, we
transformed all the components to a percent-
age scale. A score of 50 represents chance
performance on all the components in Fig-
ure 2 except range and linearity. Chance
performance for the range component was
15.0 on the prediction task and 42.2 an the
reverse task. Chance on the linearity compo-
nent was 58.75.3 The standard error bars
facilitate comparisons of the differences
among the means and comparisons with
chance performance levels. The curves in
Figure 2 are cross-sectional developmental
functions for each of the components,
allowing a comparison to he made of the ef-

fects of the experimental conditions on the
developmental functions (see Wohlwill,
1973). Figure 2 shows that, as hypothesized,
the curves for the main effect component
reach a developmental asymptote quite rap-
idly in all four panels. Also, as expected, the
crossover component is below the curves for
the other components that have a chance
value of 50. The above-and-helow and mono-
tonicity components appear to develop ap-
proximately in synchrony, but before cross-
aver. The range and linearity components
cannot be compared directly to the aother
components because their chance perfor-
mance values differ, but the range compo-
nent means are near chance for three age
groups in the reverse task and for the second
graders in the prediction task.

Intuitive wvs. computational condi-
tigns.—We hypothesized that components
would be acquired earlier in the intuitive
version of the task than in the computational
version. For the prediction task, in the top
two panels of Figure 2 the mean component
scores for the computational condition are
generally helow the means of the intuitive
condition. In the reverse task (hottam panels
of Fig. 2}, the main effect, monotonicity, and
above-and-below component means are
lower in the camputational condition than in
the intuitive condition. The range and cross-
over scores are close to chance for the sec-
ond through eighth graders in both the intu-
itive and camputational conditions of the
reverse task and do not show a clear pattern
of differences due to condition. These
effects of condition were confirmed by
ANQOVAs of each grade separately in a 2 {in-
tuitive vs. computational condition) x 2 (pre-
diction vs. reverse task) x 6 (component)
design that showed significant effects of con-
dition at all grade levels (F's = 7.50, 10.52,
5.27, 6.73, df's = 1/40, 1/38, 1/46, 1/68, for
seco‘?d through college, respectively, p's <
05).

3 Because the chance performance level differs for two of the components, the scales for the
components are naot completely comparahle. Caleulation of chance performance far range and
linearity was complex. For the range component, chance was calculated assuming a response
range of 0° to 100°, For the prediction task, the average interval between the added temperatures
and the standard was taken as a proportion of the total respanse range. This gave the average
prabability of a4 random respanse falling between the added and standard temperatures. Multi-
plying the average probability by the number of judgments yielded chance performance. For the
reverse task, chance for the range component was calenlated similarly. Chance for the linearity
component was caleulated similarly, also assuming a 0° to 100° temperature seale. The transfor-
mation of linearity to a 0 to 100 percentage scale was {—1) (linearity)”? + 100. Because the
original linearity scores were variances, the square root was used in the transformation. The
other transformations to percentages were [inear.

*A 4 {grade) x 2 {condition) x 2 (task) X & {component) repeated-measures MANOVA
showed significant (p < .05) effects of grade, F(3,192) = 74.92, condition, F (1,192} = 24.10,
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FiG. 2—Mean component scores plotted as a function of grade with a separate curve for each
component. The left panels show results for the intuitive conditions. The right panels show the results
for the computational condition. The lower panels show the reverse task results, while the upper panels
show the prediction task results. The bars represent plus and minus 1 standard errar.

Prediction vs. reverse tasks.—We also
expected that companents of understanding
would be more advanced in the prediction
task compared to the reverse task. The 2 (in-
tuitive vs. computational condition} x 2
(prediction vs. reverse task} x 6 {compo-
nent) analyses of variance of each grade
level shawed significant interactions of task
*x component for all grades (F's = 12.89,
3.83, 3.57, 3.97, df’s = 5/200, 5/190, 5/230,
5/340, for second grade through college, re-
spectively, p's < .05), providing evidence
that the components were influenced differ-
entially by the prediction and reverse tasks.
For the computational condition, the main

effect, monotonicity, and crossover compo-
nents are lower in the reverse task when per-
formance is between chance and asymptote.
The picture is more mixed for the linearity,
range, and above-and-below components. In
sum, the expected differences between the
prediction and reverse tasks were more clear
for the intuitive candition than for the com-
putational condition.

Organization of Components: Fuzzy Set
Analysis of Prediction Task

The age group differences in Figure 2
could mask important individual patterns.
The goal of the fuzzy set approach is to

grade » condition, F(3,192) = 6.18, task, F(1,192) = 49.60, grade x task, F(3,192) = 8.43,
component, F{5,188) = 183.58, grade % component, F{15,519) = 13.42, candition » component,
F(5,188) = 8.14, grade x condition x component, F(15519) = 1.82 task ¥ compaonent, F (5,188}
= 14.85, grade X task x component, F(15,519) = 6.62, condition x task x companent, F(5,188)
= 3.68, and grade x condition x task x camponent, F{15519) = 2.20. The repeated-measures
univariate ANOVAs reported in the text were conducted as simple effects tests to explore the
significant interactions of grade with condition, task, and campanent. The p values reparted in
the text are all < .05 unless nated otherwise, and are based an Greenhouse-Geisser adjustments

in the case of a repeated-measures ANOVA.
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represent the individual patterns and their
developmental ordering. The approach
requires that the investigator define the
prototype for each fuzzy developmental
level. Far the prediction task, we defined
six prototype component patterns: Every-
thing-Right (all component scores perfect),
Everything-but-Crossover (all component
scores perfect except crossover, which was
set at the chance value), Everything-but-
Range (all component scores perfect except
range, which was set at the chance value),
Everything-but-Crossover-and-Range  (all
component scores perfect except range and
crossover), Adding (all component secares
perfect except above-below, range, and
crossaver), and Everything-Wrong (all com-
ponent scores at chance). These prototypes
define a perfect member of each of six hy-
pothesized fuzzy developmental levels.

Many possible prototypes could be cho-
sen to represent possible developmental
levels. The Everything-Wrong and Every-
thing-Right prototypes are the obvious be-
ginning and end points of development.
The Adding prototype was included because
Strauss and Stavy (1982) reported that some
subjects literally added numerical tempera-
tures. The remaining three prototypes in-
volving differences in range and crossover
were developed partly on the basis of previ-
ous findings. First, Reed and Evans (1987)
found that in an acid mixture task with col-

lege students, the range and crossover com-
ponents contributed independently as pre-
dictors of accuracy. Second, the age group
means in Figure 2 suggest that the range and
crossover components develop relatively
late. Finally, following Reed and Ewvans
(1987}, examination of the frequency distri-
hutions of the components showed that bath
range and crossover had multipeaked distri-
butions indicative of the presence of indi-
vidual differences. Three of the prototypes
allow a test of the hypathesis that range and
crossover are acquired in a single develop-
mental sequence. If there is a single se-
quence, then subjects should be found in
either the Everything-but-Crossover or
Everything-but-Range fuzzy levels, but nat
both.

The fuzzy set approach requires a mem-
bership function. We calculated the Euclid-
ean distance of each individual component
profile to each of the six prototype patterns,
after standardizing the variables by dividing
by the standard deviation. The smaller the
distance to the prototype, the higher the
membershp in that fuzzy developmental
level. However, developmental researchers
want to know the level in which an individ-
ual fits best. Using the distance measures,
individuals were grouped into that fuzzy
level for which distance to the prototype was
smallest. The reader is reminded, however,
that membership in the fuzzy levels is a con-
tinuous functian.®

_5 Each individual has a profile consisting of the six component scares, and each prototype
consists of a profile of six component scares. The Euclidean distance between the individual’s
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profile and a protatype is:

where the ¢; represent the six component seares of the individual, and the p, represent the six
component scores for the prototype. The distances were caleulated on the original component
scores divided by their standard deviations, nat the transformed scares. We chose Euclidean
distance as a measure of similarity between the subject’s profile and the prototypes becanse it
is sensitive to both the shape and elevation of a profile. Distance measures are widely used in
other methads requiring similarity measures, such as clustering and multidimensional scaling
in spite of the fact that distance measures can be influenced by scale transformations. Dividiné
each variable by its standard deviation has the effect of changing the lengths of the axes of the
multivariate space. Also, if variables that are highly correlated are used, the effect on Euclidean
distance is to give higher weight to thase variables. Because some of our components form
hierarchical pairs (main and monotanicity, above-and-below and range), we examined the com-
penent correlation matrix. The highest correlation between any pair of components was .84 for
monotanicity and above-and-below on the reverse task, not a hierarchical pair. The correlations
for the hierarchical pairs were all below .8, and three of the four #'s were below 7. Thus, the
variables are nat colinear. The hierarchical structure of the paired campanents restricts the areas
of the multidimensional component space in which subjects can appear. For ahove-and-belaw
and range, it is impossible for a person’s range score to exceed the abave-and-belaw score. The
relation between main effect and monotanicity is similar in that each main effect compaonent
score sets a minimum value for monotenicity. For example, a main effect component score that
is perfect limits manotonicity ta be at [east 20% of the maximum score. One implication af using



We hypothesized that there would be a
difference between the intuitive and compu-
tational conditions in the distribution of sub-
jects across the six fuzzy developmental
levels, especially for the Adding and
Everything-but-Range prototypes. Because
a component profile approximating the Add-
ing prototype is unlikely to be produced by
any process ather than numerical addition,
subjects in the computational condition
should be more likely than those in the in-
tuitive condition to be closest to that
prototype. In contrast, a profile similar to
the Everything-but-Range prototype seems
most likely to be produced by estimation in
which temperature and quantity are used ap-
propriately, but the subjective values of tem-
perature are more extreme than the given
values. It is difficult to devise a computa-
tional approach that would generate the
Everything-but-Range pattern. However, if
subjects in the computational condition re-
sort to estimation, they could fall into the
Everything-but-Range fuzzy level. Compo-
nent patterns fitting the other prototypes
might be produced by either estimation or
explicit calculation. The Everything-but-
Crossover pattern can be generated by ei-
ther computation of an unweighted average
or by an estimate in which hoth tempera-
tures are used but quantity is ignored. The
Everything-Right pattern could be produced
by literal computation of a weighted average
or as an estimate in which both temperature
and quantity are used appropriately. Alsa,
based on the hypothesis that performance is
mote advanced in the intuitive condition,
especially for the younger subjects, there
should be more subjects in the computa-
tional condition than in the intuitive condi-
tion who are closest to the Everything-
Wrong prototype.

The left-hand columns of Table 1 pre-
sent the numbers of subjects in each condi-
tion of the prediction task falling closest to
each prototype. Consistent with the view
that discrete categorization neglects individ-
ual differences, same individuals were equi-
distant fram and closest to two prototypes:
{a) Everything-Right and Everything-but-
Crassover, and (b) Everything-but-Range
and Everything-but-Range-and-Crossover. A
chi-square test of independence showed a
significant difference in the distribhution of
subjects across levels for the two conditions,
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¥i6) = 3651, N = 200, p < .0l. Compo-
nent profiles closest to the Adding and
Everything-Wrong protatypes were infre-
quent in the intuitive condition compared
to the computational condition, and the
Everything-but-Range pattern was wmore
common in the intuitive condition. In the
intuitive condition, subjects were found in
both Everything-but-Range and Everything-
but-Crossover, contrary to the single devel-
opmental sequence hypothesis. Thus, the
fuzzy level classification suggests that
there are two developmental pathways to
mature intuitive performance on this task:
the range camponent can be acquired before
the crossover companent, ar vice versa. In
the computational condition, there were
very few subjects in either Everything-but-
Range aor Everything-but-Crassover, im-
plying that these prototypes are not impor-
tant paths for the computational condition.
This might be expected if the subjects are
probabilistically selecting difterent compu-
tational strategies, as proposed by Siegler
{1988). If subjects in the computational con-
dition had relied largely on estimation, their
distribution. of memberships would have
been the same as that of the intuitive con-
dition.

Figure 3 presents the mean judgments
for the predicted task for the four groups
with the largest numbers of subjects. Each
group has a distinet pattern of judgments
that is consistent with its prototype defini-
tion, showing the success of the method in
identifying groups with different response
patterns. A 4 (group} % 3 (added tempera-
ture} X 5 (quantity) analysis of variance of
each condition showed significant group x
added temperature x quantity interactions,
F(48,1264) = 5.34, F(48,1312) = 2.95 for in-
tuitive and computational, respectively. For
both conditions, the judgments of the
Everything-Right group (far left papels) are
very close to the correct answers, with large
and significant interactions of temperature
X quantity, F(16,688} = 49.71, F(16,672) =
100.31 for intuitive and computaticnal, re-
spectively. Subjects whose patterns were
midway between the Everything-Right and
Everything-hut-Crossover prototypes also
showed significant interactions between
quantity and temperature, ¥{16,144) = 5.786,
F(16,160) = 4.28, although the crossover
effect of quantity was not clear. In the intu-

the components we chose is that it would be nansense to hypathesize a protetype such as
Everything-but-Above-and-Below or Everything-but-Monotonicity because the prototypes
would be outside the boundaries of the space defined by the possible component scores.
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TABLE 1

NuMBERS OF SUBJECTS CLOSEST 10 EacH PROTOTYPE

PrREDICTION TasK REVERSE Task

PROTOTYPE Intuitive Computational Intuitive Computational

{1) Everything-Right ... 44 43 29 34

Between (1) and (2} ............. 10 11 6 6
{2) Everything-but-Crassover 12 5 17 8
{3) Everything-but-RHange ...... 17 2 6 2

Between (3) and (4] ... 5 3 4 1
{4) Everything-but- Range a.nd Crossover 5 7 24 14
(3} Adding .. et 2 20 B
{6) Large- Mmus Small . 2 15
{7) Final-Minus- Standard o Ca 6 13
{8) Everything-Wrong ......cccivmnvininnnnionan. 2 12 3 10

NoTe.—Subjects who were between (3) and (4) were cambined with categary {4} for the chi-square test. In the
reverse task, one subject in the intuitive condition was closest ta the Standard-Minus-Final pratotype. For the chi-
squate test, this subject was combined with the Large-Minus-Small category.

itive condition {upper row of panels), the
Everything-but-Crossover group does not
show an interaction between quantity and
added temperature, F(16,176} = .76, N.S.,
and the curves for all quantities are almost
exactly on top of one another. In contrast,
the mean judgments of subjects in the intu-
itive Everything-but-Range group {upper far
right panel of Fig. 3} show a significant
added temperature X quantity interaction,
F(16,256) = 13.75. These subjects appear to
have a solid understanding of how quantity
works in the task. However, many of the
judgments are out of range, that is, they do
not fall between the added temperature and
the 40° standard.

For the computational condition, the
mean judgments in the Adding group show
the expected pattern: all the means are
abave the 40° standard, there is no effect of
or interaction with quantity, but there is a
clear effect of added temperature. The mean
judgments of thase in the Everything-Wrong
group of the computational condition (lower
far right panel of Fig. 3) do not even show a
significant effect of added temperature. This
extremely poor understanding accurred very
infrequently in the intuitive condition.

The age distribution of those individu-
als who are closest to each fuzzy level proto-
type is shown in Figure 4 with some of the
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groups combined. In the intuitive condition
{top panel), a large proportion of the col-
lege students had their highest degree of
membership in the Everything-Right fuzzy
level, and the proportion of subjects in
Everything-Right increased with increasing
age. The proportion in the Everything-but-
Crossover group also increased through
eighth grade. In contrast, the proportions
of subjects in Everything-but-Range and

Everything-but-Range-and-Crossover  de-
clined with increasing age. A chi-square test
of independence on the intuitive condition
was significant, ¥%(12} = 4481, N = 97, p <
01, shawing that fuzzy level membership is
related to age 8

In the computational condition (bottom
panel of Fig. 4), the age trends are similar to
those seen in the intuitive condition. The

8 The chi-square test of the data in Figure 4 had a large number of cells with expected
values less than 5. We also calculated the chi-square by combining the second and fifth graders
and the Everything-Wrong, Adding, and Everything-but-Range-and-Crossover groups. The result
was significant, y¥4) = 33.49, N = 97, p < .01. DeLuceci (1983) reported that the recommenda-
tions with respect to expected values are quite conservative with respect to Type I error. Chi-
square tests for age differences in the other condition-task comhinations alsa remained significant
when categaries were combined, ¥}(4) = 50.17, 43.64, 72.07 for computational prediction, intu-
itive reverse, and computational reverse, respectively.
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proportions in the Ewverything-Right and
Everything-but-Crossover groups increase
with age, while the proportions in the Add-
ing and ather fuzzy developmental levels
decline with age. The chi-square test of in-
dependence on the computational condition
was also significant, ¥%(12) = 66.40, N =
103, p < .01, Thus, the results in Table 1
and Figure 4 shaw that the fuzzy level mem-
herships for the predictien task are related
to both age and condition.

Fuzzy Set Analysis of the Reverse Task
The reverse task was analyzed analo-
gously to the prediction task. We defined
eight prototype patterns and computed the
Euclidean distance of each subject’s com-
ponent pattern to each prototype. Five of
these patterns were the same as those used
in the prediction task: Everything-Right,
Everything-but-Crossover, Everything-but-
Range, Everything-but-Croassover-and-Range,
and Everything-Wrong. We replaced the
Adding prototype of the prediction task
with three passible subtraction patterns:
Final-Minus-Standard, Larger-Minus-Smaller,
Standard-Minus-Final.” The subtraction
prototypes were used bhecause the reverse
task requires working back from the final
temperature to the added temperature.

As in the prediction task, we expected
that there would be a difference between
the intuitive and computational conditions
in the distribution of subjects across fuzzy
developmental levels. The right-hand cal-
umns of Table 1 present the numbers of sub-
jects in each condition of the reverse task
closest to each prototype. As in the predic-
tion task, some subjects were equidistant
from twa prototypes. A chi-square test of in-
dependence showed a significant difference
in the distribution of subjects across levels
for the two conditions, xX7) = 25.70, N =
200, p < .01. As expected, the two subtrac-
tion and the Everything-Wrong patterns had
more members from the computational con-
dition than from the intuitive condition.
{Only one subject was closest to the
Standard-Minus-Final prototype, so it was
eliminated from further analyses.) Similarly,
the Everything-but-Range and Everything-

but-Range-and-Crossover patterns had more
subjects from the intuitive condition closest
ta them. Finally, the single developmental
sequence hypothesis was also contradicted
in the intuitive condition of the reverse task.

Figure 5 presents the mean judgments
for the reverse task for the four fuzzy level
groups with the most suhjects. A 4 {group)
X 5 (final temperature} % 5 (quantity) analy-
sis of variance of each condition showed
significant group x final temperature x
quantity interactions, F(48,1152) = 9.61,
F{48,1152) = 10.84 for intuitive and com-
putational, respectively. As in the predie-
tion task, the mean judgments of the
Everything-Right group for hoth the intu-
itive and computational conditions approxi-
mate the correct pattern with large signifi-
cant interactions of temperature x quantity,
F{16,448) = 30.84, F(16,528) = 78.19 for in-
tuitive and computational, respectively. The
mean judgments of those subjects in the in-
tuitive condition who are closest ta the
Evervthing-but-Crossover prototype show
no interaction between final temperature
and quantity, F{16,256} = 1.33. In contrast,
the intuitive Everything-but-Range group
showed a significant interaction of final tem-
perature X quantity, F(16,80) = 5.62. The
mean judgments of the Everything-but-
Range-and-Crossover group did not show an
interaction between quantity and tempera-
ture, F(16,368) = 2.22, N.S., and many of
their mean judgments vialate the range prin-
ciple. The judgments in the computational
condition of the Final-Minus-Standard and
Large-Minus-Small groups show patterns
that differ dramatically from the others. All
the means are below 40° as expected if the
subjects are literally subtracting. The Final-
Minus-Standard group showed a significant
main effect of final temperature, F(4,48) =
25.39, while the Large-Minus-Small group
did not, F(4,56) = .82, N.8.

Figure 6 presents the percentage of sub-
jects in each age group in each reverse task
fuzzy developmental level. In both condi-
tions of the reverse task, fuzzy level mem-
bership was significantly related to age,
¥H(12) = 54.62, N = 97, p < .01, ¥¥12) =

7 The subtraction component patterns, like the adding pattern, were calenlated from the
respanse pattern that would be generated from that strategy. The Final-Minus-Standard strategy
consisted of subtracting the standard from the given final temperature. The percentage compo-
nent scares were 100, 160, 50, 50, 50, and 100 for main, monotonicity, above-and-below, range,
crossover, and linearity. The Larger-Minus-Smaller strategy consisted of subtracting the smaller
temperature from the larger one, with percentage camponent scores of 0, 50, 50, 50, 50, and 88.8.
The Standard-Minus-Final strategy consisted of subtracting the given final temperature from the
standard, and produced percentage component scores of 0, 0, 5G, 50, 50, and 100,
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84.63, N = 103, p < .01, for intuitive and
computational conditions, respectively. The
majority of college students were closest ta
the Everything-Right prototype, and the per-
centage in Everything-Right increased with
age. In the intuitive condition, the propor-
tion of subjects in second through eighth
grade who were in either the Everything-
but-Crossover, Everything-but-Range, or
Everything-but-Range-and-Crossover groups
was approximately constant. In the compu-
tational condition, the proportion closest
to Everything-Right increased with age,
while the proportion in the Subtracting
groups declined. Eighty percent of the sec-
ond graders were closest to the Subtracting
or Evervthing-Wrong prototypes. Clearly,
the computational reverse task posed prob-
lems for many second graders.

Relation between Prediction and Reverse
Tasks

Table 2 presents the relation between
fuzzy developmental level in the prediction
and reverse tasks for hoth the intuitive and
computational conditions. First, Cohen’s
kappa (Siegel & Castellan, 1988} was used
as a measure of consistency across tasks: k
= 1461, z = 2.4839, p < .05, and « = 4111,
z = 7.3908 p < .01 for the intuitive
and computational conditions, respectively.

TABLE 2

NUMBERS OF SUBJECTS CLOSEST T0 EACH
PROTOTYPE

INTULTIVE CONDITION,

BEVERSE PreDICTION TASK PROTOTYPE
Task

PROTOTYFE 1 2 3 4 5 8

19 8 2 4] 0 Q

9 8 4 1 1 Q

4 0 2 Q 4] 0

11 5 5] 5 1 0

1 0 3 3 (] 1

4] 1 Q 1 4] 1

COMPUTATIONAL CONDITION,
PREDICTION TASK PROTOTYPE

1 2 3 4 5 8

29 5 0 a ¢ 0
7 6 0 1 a a
a 1 1 0 a 0
6 2 a 2 2 3
1 2 1 4 15 3
a o 0 3 3 4

NoTE. —Prototypes are numbered as in Table 1.
Those subjects who were between two prototypes were
grouped with the higher-numbered categary.

There is significant but weak consisteney in
the groupings across the prediction and re-
verse tasks. This low consistency would be
expected if development in the prediction
and reverse tasks is asynchronous.

The direction of the difference hetween
the prediction and reverse tasks was tested
using McNemar's change test {(McNemar,
1949; Siegel & Castellan, 1988). We ex-
pected that performance would be more ad-
vanced in the prediction task than in the re-
verse task. For the intuitive condition, there
were 23 subjects above the diagonal and 38
helow the diagonal, a difference in the cor-
rect direction, but nonsignificant, ¥¥1) =
3.69, N = 61, p > .05. For the computational
condition, there were 16 abave the diagonal
and 30 below the diagonal, x*1} = 4.26, N
= 46, p < .05. Thus, in the computational
condition, subjects who were not in the
same groups on the twa tasks were more
likely to be in a more advanced group on the
prediction task than on the reverse task.

Individual Differences and Developmental
Paths

There are two types of individual differ-
ences of interest to developmental research-
ers: {a} differences among individuals in the
same age group, and (b} differences among
individuals at the same developmental
level. Within-age group differences are pre-
sented in Figures 4 and 6, which show that
those in the same age group have different
memberships in the fuzzy developmental
levels.

The fuzzy set approach also provides a
measure of degree of membership of each
individual in each fuzzy developmental
level. The percentage distance to each pro-
totype was calculated for each suhject {dis-
tance to the prototype divided by the sum of
the subject’s distances to all protatypes).
The means and standard deviations of the
percentage distances to the subjects’ nearest
prototypes are presented in Table 3. These
values provide measures of the “fuzziness”
of the groups around their prototypes. In all
four conditions, the Everything-Right group
is elosest to its prototype. The largest mean
distances occur for groups that are expected
to be small or empty, suggesting that thase
subjects closest to those prototypes are there
either by chance or through inconsistent
responses. For example, the intuitive Add-
ing and the computational Everything-but-
Range prediction groups both have large
means and are groups that were expected to
be small or empty.
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TABLE 3

MEAN PERCENTAGE DMSTANCES ‘TO NEAREST PROTOTYPE

[NTUTTIVE COMPUTATIONAL

Mean SO N Mean SD N

Prediction prototype:

{1} Everything-Right ..o

{2) Everything-but-Crossover ..
{3) Everything-but-Range ........

{4) Everything-but- Hange -and- Crossover

{5) Adding

{R) Everythmg—Wro;lg

Reverse prototype:

{1) Everything-Right ..........ccciininnnn.

{2) Everything-but-Crossaver ...
{3) Everything-but-Range ..........

{4) Everything- but—Range and- Crossover

{8) Large-Minus-Smal] ..
{6) F‘inal-Minus-Standard .
{7) Everything-Wrang .......

249 319 44 170 2.39 43
538 4.03 12 459 476 5
650 4.06 17 1328 129 2
812 355 5 641 470 7
1395 02 2 354 514 20
963 1.01 2 997 297 12
1.22 1.31 29 94 124 34
314 213 17 344 291 8§
375 137 6 352 35 2
463 1.73 24 540 175 14
757 246 6 288 3.04 13
390 ... 1 513 303 15
621 61 3 537 143 10

NoTe.—Subjects equidistant between twa prototypes were omitted.

Second, in the fuzzy set approach, the
rank orders of the distances to the prototypes
can be used to map the developmental paths
for a task. This way of displaying individual
differences is shown in Figure 7. Four of the
prototypes form the corners of a rectangle in
a plane with the range and crossover compo-
nents as its two axes. (Because the variables
were divided by their SDs in calculating the
distances, the axes in Fig. 7 will not form
exact squares, but rectangles.) Other proto-
types are omitted because they do not fall on
this plane. The Evefything-Wrong, Adding,
and all Subtracting prototypes have compo-
nent scores on variables other than range
and crossover, which fall below the plane in
Figure 7. The rectangle in Figure 7 can be
divided into eight slices, which represent
the eight possible distance rank orders in a
plane (Coombs, 1964). Each slice of the rect-
angle shows the number of subjects who had
a particular distance rank arder. Only thase
subjects who were closest to one of these
four particular prototypes are included.

Examination of Figure 7 shows that
there are some subjects closest to the
Everything-Right prototype who are next
closest to the Everything-hut-Crossaver pro-
totype, and others who are next closest to
Everything-but-Range. Individuals in these
two regions differ in their relative mastery
of the range and crossover components even
though they are all closest to the Every-
thing-Right prototype. In the intuitive pre-
diction task, there were only five sub-

jects closest to Everything-bhut-Range-and-
Crossover. However, two of them are next
closest to Ewerything-but-Crossover, and
three are next closest to Everything-hut-
Range. These could represent the begin-
nings of the two alternative developmental
paths. Those subjects in the 3412 (N = 8)
and 2413 (N = 6} slices are the continuations
of the twa paths. Thus, an individual’s dis-
tance rank order provides a simplified pro-
file of position with respect to the hypothe-
sized fuzzy developmental level prototypes,
and characterizes the person’s current state
of development.

Discussion

Proportional reasoning can be conceptu-
alized in terms of a set of components that
develop gradually through several organiza-
tional patterns or structures. There are two
major contingencies on the structure of com-
ponents: {a) whether the task is presented
numerically with computation encouraged,
or such that only estimation and intuition are
required, and (b) whether the task is pre-
sented such that it requires prediction ver-
sus inference of a prior state (reverse task).
Even a fair number of fifth graders showed
mature propartional reasoning in the intn-
itive version of the temperature prediction
task, in contrast to the reverse task or numer-
ical prediction task. These findings provide
a new perspective on proportional rea-
soning.
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Intuitive versus Numerical Proportional
Reasoning

Inhelder and Piaget (1958, p. 219)
viewed proportional reasoning, which in-
volves explicit calculations, as somehow
following naturally from qualitative pro-
portional reasoning. The present research
shows that it is inadequate to deseribe nu-
merical propartional reasoning as automati-
cally arising from mature intuitive propor-
tional reasoning. The relation between
intuitive understanding and the process of
arriving at a computational scheme deserves
further research. First, the ability of subjects
to use their intuitive understanding of the
task to evaluate different computational for-
mulas needs to bhe studied. For example,
subjects with knowledge of all components
except range would not he expected to be
satisfied with computing a simple average
of temperatures, because doing so ignores
quantity. Second, the relation between intu-
itive understanding and analegical reason-
ing should be studied. Even if a person has
the correct weighted average formula or the

intuitive weighted average concept in an-
other task, it must still be mapped correctly
onto the temperature mixture task {Gentner,
1983). A person’s intuitive understanding of
the temperature task should be important in
the process of mapping relations in one do-
main onto another domain because mapping
requires some understanding of how vari-
ables function in a problem. In sum, unless
a person attempts to bring intuitive under-
standing to bear on a computational task, a
computational scheme would he expected to
be based primarily on the memory availabil-
ity of mathematical operations. This is es-
sentially what is seen when subjects add or
subtract the temperatures. Further research
is needed to explore the conditions under
which subjects do and do not use their intu-
itive understanding to regulate their compu-
tational attempts.

Proportional Reasoning on Prediction
versus Reverse Task

A second major contingency is whether
the task is presented in a prediction format



ar inference (reverse task} format. The fuzzy
set analysis and mean component scores
show that the components of understanding
are less firmly grasped in the reverse task.
Other research has shown that problems that
involve the same mathematical operations
can differ greatly in difficulty. Greer (1987)
reviewed the literature and concluded that
addition and subtraction problems in which
the final state is unknown are easier than
those in which one of the other variables is
unknown. For multiplication and division
problems, however, Greer concluded that
the situation is much more complex, with
the type of number (integer, decimal greater
than 1, or decimal less than 1) having a very
large influence on difficulty. In the present
study, the children performed worse on the
reverse task compared to the prediction task
in both the computational and intuitive con-
ditions. The prediction and reverse tasks
may involve different logic or sets of opera-
tions. This interpretation is supported by re-
search on social judgments using prediction
and reverse tasks (Kun, 1977; Surber, 1980,
1984) and ather research on physical tasks
{Surber & Gzesh, 1984; Wilkening, 1981).

One possible explanation of the diffi-
culty of the reverse task is that it requires
reasoning about a hypothetical prior state,
the type of reasoning that might be said to
require formal aperations since it involves
supposing that the containers had not actu-
ally been combined (see Kun, 1977). It is
also possible that the working memory load
involved in formulating answers for the re-
verse task is higher than that of the predic-
tion task. If a strategy for a task is so complex
that it overloads working memory, the sub-
ject will either show errors in executing the
strategy {and thus perform more poorly) or
revert to a simpler (and less adequate) strat-
egy with lower requirements on working
memory (Shatz, 1978). A drawback of the
working memory explanation is that it as-
sumes that aver a wide age range people are
capable of using a variety of strategies, and
that what develops is memory capacity, and
the automaticity of the strategies which
allows them to be applied with limited
memory capacity. Thus, the process of the
development of new knowledge structures
or strategies is de-emphasized. Based on the
present results, it seems that in aorder to have
a full account of the development of propar-
tional reasoning, some process of computa-
tional strategy invention (Siegler & Jenkins,
1989) or intuitive knowledge restructuring
needs to be included.
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Modeling Developmental Change:
Components and “Fuzzy Sets”

In age group analyses, the components
showed different developmental functions
and different effects of the experimental ma-
nipulations. However, age group analyses
ignore individual differences and can actu-
ally distort the data patterns of the indi-
viduals (see Surber, 1980). The fuzzy set
approach introduced here provides a way
of analyzing cross-sectional developmental
change which preserves individual differ-
ences. Individuals are characterized ac-
cording to the similarity of their component
profiles to prototypes. The prototypes can be
chosen to represent qualitatively different
developmental levels of performance. The
developmental trends in the hypothesized
fuzzy levels can be seen by examining the
age distributions of thase individuals with
similar component profiles. The applicabil-
ity of the present approach ta other domains
is shown in a study of perspective taking that
used a similar approach. Dixon and Moare
(1990} defined four components in a per-
spective-taking task, and grouped suhbjects
according to their component profiles. The
groups showed qualitative developmental
differences that were strikingly different
from the age group means, as in the present
study.

The fuzzy set approach alsa provides a
method for empirically testing the hypothe-
sis that there is a single path of development
or a universal invariant sequence. The dis-
tances of a subject to each prototype indicate
where that subject is with respect to the
components and the prototypes. The data of
the intuitive condition of the present study
were inconsistent with the universal invari-
ant sequence hypothesis for acquisition of
the crossover and range components. Per-
haps cognitive developmental research has
concentrated too much on the universal
invariant sequence idea while neglecting
the description of multiple developmental
paths. The fuzzy set approach provides a
way of measuring and deseribing the devel-
opmental paths that exist in a domain.

Although individuals can be classified
discretely as members of a particular fuzzy
developmental level, the approach repre-
sents individuals as having different degrees
of membership in developmental levels.
This provides a potential rapprochement be-
tween continuity theories of development
and theories that emphasize qualitative
changes. The question of whether develop-
ment is 4 continuous process of quantitative
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change as opposed to a process of shifts be-
tween qualitatively different levels then be-
comes an issue of grain of analysis, or scale
in systems theory (Allen & Starr, 1982). If
develapmental levels are categories with
fuzzy boundaries, then the rate of change be-
tween levels can he measured. Once such
measurements are possible, researchers
then can specify how rapidly a change from
one level to the next must occur in order
for it to be considered a saltatory, qualitative
shift. Thus, traditional classification meth-
ods in which individuals are placed in dis-
crete developmental levels are incomplete,
but not necessarily incorrect, The fuzzy set
approach allows simultaneous description of
individual differences, developmental lev-
els, and the pathways of develapment.
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