Overview:
This handout covers the basics of logistic regression using R’s ‘glm’ function and the ‘binomial’ family of cumulative density functions. Logistic regression is appropriate for data with a dichotomous DV. The predictors can be scaled, or factors, etc. ‘glm’ stands for ‘generalized linear models’, not ‘general linear model’. The models are fit by maximum likelihood, not least squares.

Quick look at code:
> library(aod) # needed only for Wald test
> library(car) # for Type II or Type III tests
> library(effects) # for effect plots
> modeln=glm(dichotomousDV~iv1+iv2+iv3, family="binomial")
> summary(modeln) # shows the coefficients
> confint(modeln) # gives 95% confidence interval of coefficients
> exp(confint(modeln) # gives conf intervals of odds ratios
> exp(coef(modeln)) # gives odds ratios
> exp(cbind(OddRatiomodeln=coef(modeln),confint(modeln))) # odds & conf interval at once

I.A. Bring in data and poke around at descriptives.
This is a study of how spirituality is related to environmental attitudes and behavior, part of the dissertation of Andrew M. Garfield, University of Wisconsin. Participants were approached at a popular state park and asked to fill out a survey. At the end they were given an opportunity to donate to the Friends of Wisconsin State Parks nonprofit, volunteer for the park, and give their email to be passed on to the state park friends organization.

The research question is whether 'spiritual oneness' measured by a new questionnaire predicts (or is related to) proenvironmental behavior.

The dichotomous DVs we can use are donate (any at all), email (give email to interviewer).

> garfield=read.table(pipe("pbpaste"),header=T) # before you hit ‘enter’ paste the data to the clipboard
> attach(Garfield) # some warn not to attach
> garfield[1:5,] # show first 5 observations

ID gndr age isn donate amtdonate voluntr volhrs email EAS stewardsh dombelief
1 A19 2 NA 5 0 0 0 0 8.5 9 3
2 A12 NA 2 0 0 0 0 1 6.5 7 4
3 B14 1 NA 6 0 0 0 0 8.5 9 1
4 A16 NA 5 0 0 0 0 0 9.0 9 6
5 B15 1 NA 6 0 0 1 2 1.0 9 2

envintent spiritOne envprotec dombel3 vol2
1 7.0 7.00 7.75 2.33
2 7.5 4.75 7.00 3.67
3 9.0 3.50 9.00 1.33
4 7.0 5.75 8.00 4.33
5 3.5 2.25 5.75 1.67
> summary(garfield) # shows that indeed ‘donate’ and ‘email’ are
dichotomous. Look for out-of-range scores too.

<table>
<thead>
<tr>
<th>ID</th>
<th>gndr</th>
<th>age</th>
<th>isn</th>
<th>donate</th>
</tr>
</thead>
<tbody>
<tr>
<td>B14: 2</td>
<td>Min. :1.000</td>
<td>Min. :18.00</td>
<td>Min. :0.000</td>
<td>Min. :0.000</td>
</tr>
<tr>
<td>A01: 1</td>
<td>1st Qu.:1.000</td>
<td>1st Qu.:25.00</td>
<td>1st Qu.:4.000</td>
<td>1st Qu.:0.000</td>
</tr>
<tr>
<td>A03: 1</td>
<td>Median :2.000</td>
<td>Median :34.00</td>
<td>Median :5.000</td>
<td>Median :0.000</td>
</tr>
<tr>
<td>A04: 1</td>
<td>Mean :1.528</td>
<td>Mean :35.41</td>
<td>Mean :5.073</td>
<td>Mean :0.1124</td>
</tr>
<tr>
<td>A05: 1</td>
<td>3rd Qu.:2.000</td>
<td>3rd Qu.:42.50</td>
<td>3rd Qu.:6.000</td>
<td>3rd Qu.:0.000</td>
</tr>
<tr>
<td>A06: 1</td>
<td>Max. :2.000</td>
<td>Max. :63.00</td>
<td>Max. :7.000</td>
<td>Max. :1.0000</td>
</tr>
<tr>
<td>(Other):173</td>
<td>NA's :4</td>
<td>NA's :9</td>
<td>NA's :1</td>
<td>NA's :2</td>
</tr>
</tbody>
</table>

Continue with descriptive until you have ‘made friends’ with your data.
Also, it is a good idea to look at the correlation matrix of predictor
variables so that you don’t inadvertently have collinearity.

II. Fit models with ‘glm’, and interpret. Hard Q: What covariates make sense?
Should we choose covariates empirically after seeing relationships or on a
priori grounds? (probably a bit of both).

II.A. Start simple with a model with a single predictor

```r
> mod3=glm(donate~spiritOne,family="binomial",na.action=na.omit)
> summary(mod3)
```

```
## the z-value below is the ‘Wald’ test of significance. It is analogous to
## the t-test for the coefficients in linear regression
```

Call:
```
glm(formula = donate ~ spiritOne, family = "binomial", na.action = na.omit)
```

Deviance Residuals:
```
Min 1Q Median 3Q Max
-0.8307 -0.5265 -0.3597 -0.2261 2.8660
```

Coefficients:
```
Estimate Std. Error z value Pr(>|z|)
(Intercept) -6.1289 1.4059 -4.360 1.3e-05 ***
spiritOne 0.5825 0.1854 3.142 0.00168 **
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
```

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 120.46 on 175 degrees of freedom
Residual deviance: 106.82 on 174 degrees of freedom
(4 observations deleted due to missingness)
AIC: 110.82
Number of Fisher Scoring iterations: 6

-- Get Likelihood Ratio tests, which are preferred to Wald tests given by default. Could use 'car' package to get Type II or III tests, but with only one predictor variable it won't matter.

> anova(mod3,test=c("LR")) # 'LR' means Likelihood Ratio

Analysis of Deviance Table

Model: binomial, link: logit

Response: donate

Terms added sequentially (first to last)

<table>
<thead>
<tr>
<th>Df</th>
<th>Deviance</th>
<th>Resid. Df</th>
<th>Resid. Dev</th>
<th>Pr(>Chi)</th>
</tr>
</thead>
<tbody>
<tr>
<td>NULL</td>
<td>120.46</td>
<td>175</td>
<td>120.46</td>
<td></td>
</tr>
<tr>
<td>spiritOne</td>
<td>13.638</td>
<td>174</td>
<td>106.82</td>
<td>0.0002216 ***</td>
</tr>
</tbody>
</table>

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

-- Make odds ratio and confidence interval by taking the exponential

> exp(cbind(coef(mod3),confint(mod3))) # outputs both odds ratio & conf intervals

Waiting for profiling to be done...

<table>
<thead>
<tr>
<th></th>
<th>2.5 %</th>
<th>97.5 %</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Intercept)</td>
<td>9.731e-05</td>
<td>0.02500139</td>
</tr>
<tr>
<td>spiritOne</td>
<td>1.284e+00</td>
<td>2.668e+0570</td>
</tr>
</tbody>
</table>

Interpretation: A one-unit increase in Spiritual Oneness increases the odds of donating by 1.8 times.

-- Graph the effect

> library/effects # load this package
> plot(allEffects(mod3), main="Spiritual Oneness and Donation")

The dashes on the x-axis are observations, and notice that the y-axis is non-linear. The Y-axis is the fitted probability, and the overall probability of donating is pretty low.
Calculate a pseudo-R-squared value using Field’s function:

```r
> logisticRsq <- function(LogModel)
+ {
+   dev = LogModel$deviance
+   nullDev = LogModel$null.deviance
+   modelN = length(LogModel$fitted.values)
+   R.1 <- 1 - dev / nullDev
+   R.cs <- 1 - exp(-(nullDev-dev)/modelN)
+   R.n <- R.cs / (1-exp(-(nullDev / modelN))))
+   cat("Pseudo R-sq for logistic regression\n")
+   cat("Hosmer & Lemeshow R-sq   ", round(R.1, 4),"\n")
+   cat("Cox and Snell R-sq        ", round(R.cs, 4), "\n")
+   cat("Nagelkerke R-sq           ", round(R.n, 4), "\n")
+ }
```

```r
> logisticRsq(mod3)
Pseudo R-sq for logistic regression
Hosmer & Lemeshow R-sq   0.1132
Cox and Snell R-sq        0.0746
Nagelkerke R-sq           0.1504
```

II. B. Compare to regular least squares linear regression. See your lecture notes for reasons not to use ‘lm’ to fit dichotomous variables.

```r
> mod4=lm(donate~spiritOne,na.action=na.omit)
> summary(mod4)
```
Call:
 lm(formula = donate ~ spiritOne, na.action = na.omit)

Residuals:
 Min 1Q Median 3Q Max
-0.21671 -0.14992 -0.09744 -0.03542 0.99321

Coefficients:
 Estimate Std. Error t value Pr(>|t|)
(Intercept) -0.12679 0.07306 -1.735 0.084431 .
spiritOne 0.03817 0.01129 3.382 0.000889 ***

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 0.3023 on 174 degrees of freedom
(4 observations deleted due to missingness)
Multiple R-squared: 0.06168, Adjusted R-squared: 0.05628
F-statistic: 11.44 on 1 and 174 DF, p-value: 0.0008892

interpretation: for each 1 unit increase in Spiritual Oneness, the
probability of donating increases by .038. But notice that the intercept is
negative.
also notice that the logistic regression gives a higher pseudo-R-sq.

> plot(allEffects(mod4), main="linear regression fit") # plot effect
The negative probability is noticeable in the graph. A person would need
spiritual oneness score of about 3.5 in order to have a zero probability of
donating. Doesn’t make sense.
III. More predictor variables.

III.A. Fit a model with most available covariates, including an environmental attitude measure (EAS), gender, age, and ‘dominance beliefs’ (beliefs that humans should rule over nature), and ‘stewardship’ beliefs.

```r
> mod2=glm(donate~gndr+age+EAS+stewardsh+envintent+dombelief+spiritOne, family="binomial")
> summary(mod2)

Call:
glm(formula = donate ~ gndr + age + EAS + stewardsh + envintent + dombelief + spiritOne, family = "binomial")

Deviance Residuals:
  Min       1Q   Median       3Q      Max
-1.3376  -0.3824  -0.1803  -0.0566   2.7419

Coefficients:
                 Estimate Std. Error    z value  Pr(>|z|)  
(Intercept)  -10.62295    3.94304  -2.694 0.007058 **
gndr         -1.18892    0.65734  -1.809 0.070501 .
age           0.13507    0.03509   3.849 0.00 0.0119 ***
EAS          -0.31860    0.29151  -1.093 0.274422
stewardsh    -0.16135    0.34634  -0.466 0.641302
envintent     0.78386    0.36194   2.166 0.030335 *
dombelief    -0.36932    0.21291  -1.735 0.082808 .
spiritOne     0.59368    0.21365   2.779 0.005457 **
```

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 118.346 on 166 degrees of freedom
Residual deviance: 78.754 on 159 degrees of freedom
 (13 observations deleted due to missingness)
AIC: 94.754

Number of Fisher Scoring iterations: 7

-- Get Likelihood Ratio tests, which are preferred to Wald tests given by default. Will use 'car' package to get Type II or III tests.

> anova(mod2,test=c("LR")) ## order-dependent Type I tests
Analysis of Deviance Table

Model: binomial, link: logit
Response: donate

Terms added sequentially (first to last)

<table>
<thead>
<tr>
<th>Term</th>
<th>Df</th>
<th>Deviance Resid. Df</th>
<th>Resid. Dev</th>
<th>Pr(>Chi)</th>
</tr>
</thead>
<tbody>
<tr>
<td>NULL</td>
<td></td>
<td></td>
<td>118.346</td>
<td></td>
</tr>
<tr>
<td>gndr</td>
<td>1</td>
<td>0.2436</td>
<td>165</td>
<td>0.621631</td>
</tr>
<tr>
<td>age</td>
<td>1</td>
<td>16.2485</td>
<td>164</td>
<td>5.555e-05 ***</td>
</tr>
<tr>
<td>EAS</td>
<td>1</td>
<td>0.9023</td>
<td>163</td>
<td>0.342174</td>
</tr>
<tr>
<td>stewardsh</td>
<td>1</td>
<td>0.1167</td>
<td>162</td>
<td>0.732612</td>
</tr>
<tr>
<td>envintent</td>
<td>1</td>
<td>8.7449</td>
<td>161</td>
<td>0.003105 **</td>
</tr>
<tr>
<td>dombelief</td>
<td>1</td>
<td>3.6477</td>
<td>160</td>
<td>0.056146 .</td>
</tr>
<tr>
<td>spiritOne</td>
<td>1</td>
<td>9.6885</td>
<td>159</td>
<td>0.001854 **</td>
</tr>
</tbody>
</table>

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

> library(car)
> Anova(mod2, test=c("LR")) # capital-A 'Anova' in 'car' package
Notice that the p-values differ from the Type I tests above

Analysis of Deviance Table (Type II tests)

Response: donate

<table>
<thead>
<tr>
<th>LR Chisq</th>
<th>Df</th>
<th>Pr(>Chisq)</th>
</tr>
</thead>
<tbody>
<tr>
<td>gndr</td>
<td>3.5047</td>
<td>0.061196 .</td>
</tr>
<tr>
<td>age</td>
<td>22.1984</td>
<td>2.459e-06 ***</td>
</tr>
<tr>
<td>EAS</td>
<td>1.1231</td>
<td>0.289250</td>
</tr>
<tr>
<td>stewardsh</td>
<td>0.1968</td>
<td>0.657319</td>
</tr>
<tr>
<td>envintent</td>
<td>5.2408</td>
<td>0.022063 *</td>
</tr>
<tr>
<td>dombelief</td>
<td>3.4885</td>
<td>0.061797 .</td>
</tr>
<tr>
<td>spiritOne</td>
<td>9.6885</td>
<td>0.001854 **</td>
</tr>
</tbody>
</table>

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

-- Make odds ratio and confidence interval by taking the exponential
If the confidence interval includes 1, it is nonsig. This is in scientific notation.

```
> exp(cbind(coef(mod2),confint(mod2)))
Waiting for profiling to be done...

  2.5 %     97.5 %
(Intercept) 2.435068e-05 3.447447e-09 0.02648321
gndr       3.045490e-01 7.746665e-02 1.05609886
age        1.144611e+00 1.075862e+00 1.23750589
EAS         7.271630e-01 4.094397e-01 1.34309420
stewardsh  8.509909e-01 4.689522e-01 1.96835922
envintent  2.189909e+00 1.115217e+00 4.71835162
dombelief  6.912026e-01 4.372840e-01 1.27426600
spiritOne  1.810639e+00 1.227426e+00 2.85810245
```

Interpretation: for each 1 unit increase in Spiritual Oneness score, the odds of donating increases by 1.8 times, after adjusting for gender, age, environmental attitude, stewardship attitudes, intent to act pro-environmentally, and dominion beliefs.

The other important variables are: age (for each 1 yr increase in age, the odds of donation go up by 1.14 times), and ‘envintent’ (for each one unit increase in env intent, the odds of donating go up by 2.19 times).

```
--Find pseudo-R-sq values:  
> logisticRsq(mod2)
Pseudo R-sq for logistic regression
Hosmer & Lemeshow R-sq    0.3345
Cox and Snell R-sq         0.2111
Nagelkerke R-sq            0.4157
```

Interpretation: the pseudo-Rsq values are higher with more variables in the model, but the odds ratio for Spiritual Oneness remains about 1.8.

```
-- Plot effects:  
> plot(allEffects(mod2)) # wish I could set the y-axis the same on all graphs!
```
III. B. Compare to least squares regression, just for kicks (see lecture notes for advantages of doing things properly when you have a dichotomous outcome variable).

-- Fit linear regression with `glm` by using the gaussian family. The next model will show the equivalence of glm with gaussian to the `lm` function.

```r
> mod5=glm(donate~gndr+age+EAS+stewardsh+envintent+dombelief+spiritOne,
family="gaussian")
> summary(mod5)
```
Call:

glm(formula = donate ~ gndr + age + EAS + stewardsh + envintent +
 dombelief + spiritOne, family = "gaussian")

Deviance Residuals:
 Min 1Q Median 3Q Max
-0.37769 -0.15772 -0.07585 0.03671 0.94357

Coefficients:
 Estimate Std. Error t value Pr(>|t|)
(Intercept) -0.21031 0.21394 -0.983 0.3271
 gndr -0.05018 0.04683 -1.072 0.2855
 age 0.00931 0.00205 4.536 1.12e-05 ***
 EAS -0.01870 0.02150 -0.870 0.3858
 stewardsh -0.01727 0.01734 -0.996 0.3207
 envintent 0.02910 0.02199 1.323 0.1876
 dombelief -0.01609 0.01356 -1.187 0.2371
 spiritOne 0.03429 0.01335 2.568 0.0111 *

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

(Dispersion parameter for gaussian family taken to be 0.08636368)

Null deviance: 16.838 on 166 degrees of freedom
Residual deviance: 13.732 on 159 degrees of freedom
 (13 observations deleted due to missingness)
AIC: 74.713

Number of Fisher Scoring iterations: 2

fit with ‘lm’ function gives same result as ‘glm’ gaussian, but NOT the
same as logistic regression (glm with binomial).
> mod6=lm(donate~gndr+age+EAS+stewardsh+envintent+dombelief+spiritOne)
> summary(mod6)

Call:
 lm(formula = donate ~ gndr + age + EAS + stewardsh + envintent +
 dombelief + spiritOne)

Residuals:
 Min 1Q Median 3Q Max
-0.37769 -0.15772 -0.07585 0.03671 0.94357

Coefficients:
 Estimate Std. Error t value Pr(>|t|)
(Intercept) -0.21031 0.21394 -0.983 0.3271
 gndr -0.05018 0.04683 -1.072 0.2855
 age 0.00931 0.00205 4.536 1.12e-05 ***
 EAS -0.01870 0.02150 -0.870 0.3858
 stewardsh -0.01727 0.01734 -0.996 0.3207
 envintent 0.02910 0.02199 1.323 0.1876
 dombelief -0.01609 0.01356 -1.187 0.2371
 spiritOne 0.03429 0.01335 2.568 0.0111 *

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 0.2939 on 159 degrees of freedom
(13 observations deleted due to missingness)
Multiple R-squared: 0.1845, Adjusted R-squared: 0.1486
F-statistic: 5.139 on 7 and 159 DF, p-value: 2.734e-05

-- Find Type II SS for both of these models:
> Anova(mod5, test=c("F")) ## this is the 'glm' gaussian model

Analysis of Deviance Table (Type II tests)
Response: donate

<table>
<thead>
<tr>
<th></th>
<th>SS</th>
<th>Df</th>
<th>F</th>
<th>Pr(>F)</th>
</tr>
</thead>
<tbody>
<tr>
<td>gndr</td>
<td>0.0992</td>
<td>1</td>
<td>1.1484</td>
<td>0.28552</td>
</tr>
<tr>
<td>age</td>
<td>1.7769</td>
<td>1</td>
<td>20.5751</td>
<td>1.124e-05 ***</td>
</tr>
<tr>
<td>EAS</td>
<td>0.0653</td>
<td>1</td>
<td>0.7564</td>
<td>0.38576</td>
</tr>
<tr>
<td>stewardsh</td>
<td>0.0857</td>
<td>1</td>
<td>0.9924</td>
<td>0.32067</td>
</tr>
<tr>
<td>envintent</td>
<td>0.1512</td>
<td>1</td>
<td>1.7513</td>
<td>0.18762</td>
</tr>
<tr>
<td>dombelief</td>
<td>0.1216</td>
<td>1</td>
<td>1.4084</td>
<td>0.23710</td>
</tr>
<tr>
<td>spiritOne</td>
<td>0.5698</td>
<td>1</td>
<td>6.5972</td>
<td>0.01113 *</td>
</tr>
<tr>
<td>Residuals</td>
<td>13.7318</td>
<td>159</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

> Anova(mod6) # this is the 'lm' model

Anova Table (Type II tests)
Response: donate

<table>
<thead>
<tr>
<th></th>
<th>Sum Sq</th>
<th>Df</th>
<th>F</th>
<th>Pr(>F)</th>
</tr>
</thead>
<tbody>
<tr>
<td>gndr</td>
<td>0.0992</td>
<td>1</td>
<td>1.1484</td>
<td>0.28552</td>
</tr>
<tr>
<td>age</td>
<td>1.7769</td>
<td>1</td>
<td>20.5751</td>
<td>1.124e-05 ***</td>
</tr>
<tr>
<td>EAS</td>
<td>0.0653</td>
<td>1</td>
<td>0.7564</td>
<td>0.38576</td>
</tr>
<tr>
<td>stewardsh</td>
<td>0.0857</td>
<td>1</td>
<td>0.9924</td>
<td>0.32067</td>
</tr>
<tr>
<td>envintent</td>
<td>0.1512</td>
<td>1</td>
<td>1.7513</td>
<td>0.18762</td>
</tr>
<tr>
<td>dombelief</td>
<td>0.1216</td>
<td>1</td>
<td>1.4084</td>
<td>0.23710</td>
</tr>
<tr>
<td>spiritOne</td>
<td>0.5698</td>
<td>1</td>
<td>6.5972</td>
<td>0.01113 *</td>
</tr>
<tr>
<td>Residuals</td>
<td>13.7318</td>
<td>159</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

-- Notice the increased power in the logistic model compared to the linear model.

-- plot effects. Notice that the -.2 intercept makes for uninterpretable effects.
> plot(allEffects(mod5))