
Psych 610 Handout – R5 Colleen Moore & Mike Amato
Two-way Between Part II: Contrasts University of Wisconsin - Madison
Equal or Balanced N only!!!

This tutorial uses Keppel & Wickens, Table 11.8, p. 223. The data are available in an excel spreadsheet in the same website
where you found this document.

I. Bring in the data and prepare for the analyses you want to do.
If you have a mac, copy the data to the clipboard and tell R this:

> d1=read.table(pipe("pbpaste"),header=T) # creates a data frame called "d1"

If you’re using a PC or a mac, save your data as a text file and do one of the following:

> d1=read.table(file.choose(),header=T) #opens a window for you to browse
> d1=read.table(“filename.txt”, header=T) #R must be in the correct target directory

> d1 # ask R to show you the data
 errors A B
1 1 1 1
2 4 1 1
3 0 1 1
4 7 1 1
5 13 2 1
6 5 2 1
7 7 2 1
8 15 2 1
9 9 3 1
10 16 3 1
11 18 3 1
12 13 3 1
13 15 1 2
14 6 1 2
15 10 1 2
16 13 1 2
17 6 2 2
18 18 2 2
19 9 2 2
20 15 2 2
21 14 3 2
22 7 3 2
23 6 3 2
24 13 3 2

In previous sessions we’ve attached the data frame. The advantage of attaching is that we could refer directly to the
columns in the data frame. But there are disadvantages to attaching, especially if you are doing transformations on your
data, or want to work with more than one data frame at once. So for this session we won’t attach the data frame, which
means that each time you refer to a column you’ll also have to specify the data frame the column is in using a dollar sign.
Kind of a pain, but at least we gave it a short name.

Tell R that your factors are categorical, or else it will treat them as continuous:

> d1$A = factor(d1$A) # if we had used a1,a2,a3 instead of 1,2,3 we wouldn’t need to do this
> d1$B = factor(d1$B)

Redo the ANOVA from the previous session (handout R4), and check sure the results are the same.

> twoway.ex1 = aov(errors~A*B, data=d1)
We don’t need to specify the data frame in the model
equation, because we pass it as an argument to the
function. So R knows where to look to find A and B.

610-R5: 2 Way Between Contrasts
Moore & Amato

> summary(twoway.ex1)
 Df Sum Sq Mean Sq F value Pr(>F)
A 2 112 56.000 3.0545 0.07208 .
B 1 24 24.000 1.3091 0.26755
A:B 2 144 72.000 3.9273 0.03843 *
Residuals 18 330 18.333

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

II. Polynomial trend on factor A, which has 3 levels.
R can create Helmert, treatment, and polynomial contrasts for you. The contrasts get stored as attributes, or properties, of
the factors they are for, so when you run your ANOVA they will get applied automatically.

> contrasts(d1$A) = contr.poly(3) # makes a 3rd order polynomial contrast set for factor A
> contrasts(d1$B) = contr.poly(2) # makes a 2nd order polynomial contrast set for factor B

Take a look at the contrasts:
> contrasts(d1$A)
 .L .Q

Not exactly -1, 0, 1 like we’re
used to, but they do the job.

1 -7.071068e-01 0.4082483
2 -9.073264e-17 -0.8164966
3 7.071068e-01 0.4082483
> contrasts(d1$B)
 .L
1 -0.7071068
2 0.7071068

Now that we’ve set the contrasts on our factors, run a new ANOVA to test them. When asking for the results with
summary(), include the split parameter to tell it to show us the 2 contrasts on factor A.

> twoway.poly = aov(errors ~ A*B, data=d1) # I named it twoway.poly
> summary(twoway.poly, split=list(A=1:2)) # R knows which data frame you’re talking about.
 Df Sum Sq Mean Sq F value Pr(>F)
A 2 112 56.000 3.0545 0.07208 .
 A: C1 1 100 100.000 5.4545 0.03129 * # factor A contrast 1
 A: C2 1 12 12.000 0.6545 0.42906 # factor A contrast 2
B 1 24 24.000 1.3091 0.26755
A:B 2 144 72.000 3.9273 0.03843 *
 A:B: C1 1 144 144.000 7.8545 0.01177 * # factor A contrast 1 on AxB interaction
 A:B: C2 1 0 0.000 1.321e-31 1.00000 # factor A contrast 2 on AxB interaction
Residuals 18 330 18.333

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

The results show that the Linear contrast on the main effect of A is significant, F(1,18)=5.4545, p=.03129 , and also that the
linear contrast in A has a significant interaction with factor B, F(1,18)=7.8545, p=.01177 .

You can test the polynomial contrast on factor B by typing the following, although since B only has 2 levels it isn’t very
interesting:

> summary(twoway.poly, split=list(B=1))

Do some hand-calculation to verify that our usual linear coefficients –1,0,1 yield SS=100 for A-linear, and that our usual
quadratic coeff’s yield SS=12.

Let’s switch the A contrasts to use the ones we do in class, and see what we get.

> Alin = c(-1,0,1)
> Aquad = c(1,-2,1)
> contrasts(d1$A) = cbind(Alin, Aquad) # “column bind”; puts vectors together as columns

 2

610-R5: 2 Way Between Contrasts
Moore & Amato

> contrasts(d1$A)
 Alin Aquad
1 -1 1
2 0 -2
3 1 1
> summary(twoway.poly2, split=list(A=1:2))

Warning about entering your own contrast coefficients!!
Make sure you have mutually orthogonal contrasts! To be safe, it is probably
better to let R generate polynomial coefficients for you.

 Df Sum Sq Mean Sq F value Pr(>F)
A 2 112 56.000 3.0545 0.07208 .
 A: C1 1 100 100.000 5.4545 0.03129 *
 A: C2 1 12 12.000 0.6545 0.42906
B 1 24 24.000 1.3091 0.26755
A:B 2 144 72.000 3.9273 0.03843 *
 A:B: C1 1 144 144.000 7.8545 0.01177 *
 A:B: C2 1 0 0.000 5.808e-31 1.00000
Residuals 18 330 18.333

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Thankfully, the results don’t change.

Get the parameter estimates for the trends by using ‘lm’. Squaring the t’s below gives the F’s in the table above.

> lmout = lm(errors ~ A*B, data=d1)
> summary(lmout)
Call:
lm(formula = errors ~ A * B, data = d1)

Residuals:
 Min 1Q Median 3Q Max
-6.000e+00 -3.000e+00 -2.165e-15 3.250e+00 6.000e+00

Coefficients:
 Estimate Std. Error t value Pr(>|t|)
(Intercept) 1.000e+01 8.740e-01 11.442 1.08e-09 ***
AAlin 2.500e+00 1.070e+00 2.335 0.0313 *
AAquad -5.000e-01 6.180e-01 -0.809 0.4291
B1 1.000e+00 8.740e-01 1.144 0.2675
AAlin:B1 -3.000e+00 1.070e+00 -2.803 0.0118 *
AAquad:B1 -4.710e-16 6.180e-01 -7.62e-16 1.0000

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 4.282 on 18 degrees of freedom
Multiple R-squared: 0.459, Adjusted R-squared: 0.3087
F-statistic: 3.055 on 5 and 18 DF, p-value: 0.03610

The lm() function is really nothing new- every time you use aov(), R actually does the analysis with lm() and then shows
it to you in an ANOVA friendly format. We can get easily get lmout back into our familiar ANOVA format:

> anova(lmout)
Analysis of Variance Table

Response: errors
 Df Sum Sq Mean Sq F value Pr(>F)
A 2 112 56.000 3.0545 0.07208 .
B 1 24 24.000 1.3091 0.26755
A:B 2 144 72.000 3.9273 0.03843 *
Residuals 18 330 18.333

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

 3

610-R5: 2 Way Between Contrasts
Moore & Amato

III. Interaction contrast with more than 2 levels of B
Suppose we had 3 levels of factor B, and we wanted to see an interaction contrast, something like A-linear x B-linear? We
would use something like the following command.

> summary(twoway.poly2, split=list(A=list(AL=1,AQ=2), B=list(BL=1)))
 Df Sum Sq Mean Sq F value Pr(>F)
A 2 112 56.000 3.0545 0.07208 .
 A: AL 1 100 100.000 5.4545 0.03129 *
 A: AQ 1 12 12.000 0.6545 0.42906
B 1 24 24.000 1.3091 0.26755
 B: BL 1 24 24.000 1.3091 0.26755
A:B 2 144 72.000 3.9273 0.03843 *
 A:B: AL.BL 1 144 144.000 7.8545 0.01177 *
 A:B: AQ.BL 1 0 0.000 5.808e-31 1.00000
Residuals 18 330 18.333

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Of course for this example the test doesn’t mean a whole lot, because we only have 2 levels of factor B. But now you know
how to test for interaction contrasts.

IV. Use Helmert contrasts to compare other treatments to control
Now Suppose that one of the 3 levels of A is a control treatment. The first Helmert contrast, 2, -1, -1, can be used to
compare the other two levels of A to the control condition.

> contrasts(d1$A) = contr.helmert # tell R to generate the contrasts
> contrasts(d1$A) # tell R to show them to you
 [,1] [,2]
1 -1 -1
2 1 -1
3 0 2

Notice that the automatically created contrasts are treating the final
level as the control. Make sure that is correct for your data, or else
manually enter the contrasts as shown above.
It’s also possible to re-order an ordered factor. See R help for ‘relevel’
and ‘reorder’, as well as ‘C’.

Do the ANOVA and look at the summary. Make sure to include a split parameter.

> twoway.helm1 = aov(errors~A*B, data=d1)
> summary(twoway.helm1, intercept=T, split=list(A=1:2))
 Df Sum Sq Mean Sq F value Pr(>F)
(Intercept) 1 2400 2400.00 130.9091 1.083e-09 ***
A 2 112 56.00 3.0545 0.07208 .
 A: C1 1 64 64.00 3.4909 0.07807 .
 A: C2 1 48 48.00 2.6182 0.12303
B 1 24 24.00 1.3091 0.26755
A:B 2 144 72.00 3.9273 0.03843 *
 A:B: C1 1 36 36.00 1.9636 0.17813
 A:B: C2 1 108 108.00 5.8909 0.02594 *
Residuals 18 330 18.33

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

A:C2 is the contrast (-1, -1, 2). This contrast compares the 3rd level of A against the first two levels of A. It isn’t significant.

 4

610-R5: 2 Way Between Contrasts
Moore & Amato

V. Multiple comparisons (or ‘post-hoc’ tests) in two-way randomized designs

A. Tukey HSD tests for all possible pairwise comparisons of cell means and for each main effect.

> TukeyHSD(twoway.helm1, conf.level=.95) # don’t forget that case matters!
 Tukey multiple comparisons of means
 95% family-wise confidence level

Fit: aov(formula = errors ~ A * B, data = d1)

$A
 diff lwr upr p adj
2-1 4 -1.4638549 9.463855 0.1765920
3-1 5 -0.4638549 10.463855 0.0762126
3-2 1 -4.4638549 6.463855 0.8874232

$B
 diff lwr upr p adj
2-1 2 -1.672443 5.672443 0.2675471

$`A:B`
 diff lwr upr p adj
2:1-1:1 7 -2.6219785 16.621979 0.2395485
3:1-1:1 11 1.3780215 20.621979 0.0198670
1:2-1:1 8 -1.6219785 17.621979 0.1372669
2:2-1:1 9 -0.6219785 18.621979 0.0745666
3:2-1:1 7 -2.6219785 16.621979 0.2395485
3:1-2:1 4 -5.6219785 13.621979 0.7700940
1:2-2:1 1 -8.6219785 10.621979 0.9993809
2:2-2:1 2 -7.6219785 11.621979 0.9841453
3:2-2:1 0 -9.6219785 9.621979 1.0000000
1:2-3:1 -3 -12.6219785 6.621979 0.9149689
2:2-3:1 -2 -11.6219785 7.621979 0.9841453
3:2-3:1 -4 -13.6219785 5.621979 0.7700940
2:2-1:2 1 -8.6219785 10.621979 0.9993809
3:2-1:2 -1 -10.6219785 8.621979 0.9993809
3:2-2:2 -2 -11.6219785 7.621979 0.9841453

Plot it. Much easier on the eyes.

> plot(TukeyHSD(twoway.helm1))
> abline(v=0,h=0) # add vertical line at x=0
 #more recent versions of R do this automatically

 5

610-R5: 2 Way Between Contrasts
Moore & Amato

 6

B. Other methods for pairwise tests can be done on just main effects, or on cell means.

Do pairwise tests on cell means for factor A, adjusting p-values with the Holm method.
So group our DV, errors, by factor A

> pairwise.t.test(d1$errors, d1$A, p.adjust.method="holm")

 Pairwise comparisons using t tests with pooled SD

data: d1$errors and d1$A

 1 2
2 0.23 -
3 0.16 0.69

P value adjustment method: holm

Do pairwise tests on all cell means.
This time group errors by each term in the AxB interaction.

> pairwise.t.test(d1$errors, d1$A:d1$B)

 Pairwise comparisons using t tests with pooled SD

data: d1$errors and d1$A:d1$B

 1:1 1:2 2:1 2:2 3:1
1:2 0.215 - - - -
2:1 0.394 1.000 - - -
2:2 0.114 1.000 1.000 - -
3:1 0.029 1.000 1.000 1.000 -
3:2 0.394 1.000 1.000 1.000 1.000

P value adjustment method: holm # note that this is the default method

In this example, cell 1:1 differs significantly from cell 3:1, by both Tukey and Holm. The Tukey p-level is smaller,
implying higher power.

Do pairwise tests on all cell means again, this time using the Bonferroni method to adjust the p-values.

> pairwise.t.test(d1$errors, d1$A:d1$B, p.adjust.method="bonferroni")

 Pairwise comparisons using t tests with pooled SD

data: d1$errors and d1$A:d1$B

 1:1 1:2 2:1 2:2 3:1
1:2 0.248 - - - -
2:1 0.492 1.000 - - -
2:2 0.122 1.000 1.000 - -
3:1 0.029 1.000 1.000 1.000 -
3:2 0.492 1.000 1.000 1.000 1.000

P value adjustment method: bonferroni

Because the 1:1 vs 3:1 difference is the largest, Holm and Bonferroni adjustments are equivalent for that test. Note that the
Holm adjustment has slightly lower p-values for the others that are not 1.0.

