Psych 610 Handout — R4 Colleen Moore & Mike Amato
Two-way Between-Group ANOVA University of Wisconsin - Madison
Equal or Balanced N only!!!

This tutorial uses example data in Keppel & Wickens, 4th ed, from table 11.8. The dependent variable is number
of errors made by monkeys in a search task. The independent variables are type of drug (drug: 1=control,
2=drug_x, 3=drug_y) and degree of food deprivation (food: 1=1 hour of deprivation, 2=24 hours of food
deprivation). A text file of the data is on the Learn@UW site, named “Keppel2way.txt”.

Note that the aov methods here work ONLY for balanced designs (equal cell n's will give you a balanced
design).

1. Get the data into R

Save the data on your computer, and set R’s working directory to the folder you saved it in. Use either of the
following two commands to load the data into R.
>dl=read.table ("filename.txt", header=T) #specify the file to load
>dl=read.table (file.choose (), header=T) #open a window and browse to the file

Check to make sure it read in correctly by typing the name of the data frame you just created.
> dl

Before anything else, tell R that our Vs are categoric factors, not continuous variables.
> dl1$drug = as.factor (dlS$drug)
> dlS$food = as.factor (dl$food)

Make your life easier by giving the levels of each factor informative names.
> levels (dl$drug) = c("control", "drugX", "drug¥")
> levels (dlS$Sfood) = c("l-hour", "24-hrs")

Now let's look at some descriptives. We'll use the familiar tapply() function to get the means and standard
deviations. But since we have two factors now, we'll have to use the /is#(') function to combine them and tell R
that we want the mean and standard deviation for each cell in the design. We'll also use the length() function to
give us the number of observations in each cell, to make sure our design is balanced.

> tapply(dl$Serrors, list(dlSdrug, dlSfood), mean)
l1-hour 24-hrs

control 3 11
drugX 10 12
drugy¥Y 14 10

> tapply(dlSerrors, list(dlS$drug, dl$food), sd)
l1-hour 24-hrs

control 3.162278 3.915780

drugX 4.760952 5.477226

drugyY 3.915780 4.082483

> tapply(dl$errors, list(dlS$drug, dlS$Sfood), length)
l1-hour 24-hrs

control 4 4

drugX 4 4

drugy¥ 4 4

610-R4: 2-way between designs
Moore & Amato

2. Dothe ANOVA and Make Some Graphs

Run the ANOVA using the a0V() function, just like with 1-way designs. The only difference is that now we
want to include both factors and their interaction in our model. There are two equivalent ways to do this. The
first way explicitly specifies each term; the second way is a shortcut. Take your pick.

> omni = aov(errors ~ drug + food + drug:food, data=dl) # optionl
> omni = aov(errors ~ drug*food, data=dl) # option 2
> summary (omni)

Df Sum Sg Mean Sqg F value Pr (>F)
(Intercept) 1 2400 2400.00 130.9091 1.083e-09 **=*

drug 2 112 56.000 3.0545 0.07208
food 1 24 24.000 1.3091 0.26755
drug: food 2 144 72.000 3.9273 0.03843 *
Residuals 18 330 18.333

We can see the marginal means, standard errors, and number of observations in each cell with the following:
> model.tables (omni, "means", se=T)
Tables of means
Grand mean

10 < this is the grand mean

drug
drug
control drugX drugy¥Y
7 11 12 € these are the marginal means for factor "drug"
food
food
l1-hour 24-hrs
9 11 < these are the marginal means for factor "food"
drug:food
food
drug l-hour 24-hrs
control 3 11 < cell means
drugX 10 12 < cell means
drugyY 14 10 < cell means

Standard errors for differences of means < SE for differences, NOT for means
drug food drug:food
2.141 1.748 3.028 < calculated as sqrt(MSg/ag * 2/n)
replic. 8 12 4 < marginal n

610-R4: 2-way between designs
Moore & Amato

Graph the Main Effects
> plot.design(dlSerrors~dlSdrug*dlS$food, main="Main Effects Plot")

Main Effects Plot

i drug¥
With this handy plot we see :
=7 drugX —- 24-hrs
e the grand mean
e the cell means
§ 2 e a graphical representation
S J of their spread
§ o 4 T hour Which is useful. But it would
also be nice to see the
interactions and some error
7 bars.
~ control —
d1%drug d1%food

Factors

Graph the Interaction
The “sciplot” package has some handy graphing tools. The first time you use it you’ll need to install it. Go to
R’s “Packages” menu, select “Install”, choose a mirror site near you, and then scroll to “sciplot” and hit OK.
Once the package is installed, load it for use during your current session with the following command:

> library (sciplot)

Then draw an interaction plot complete with automatically calculated error bars at +/- 1 SE:
> lineplot.CI(x.factor=dlSdrug, response=dlS$errors, group=dls$food,
trace.label="food deprivation", xlab="type of drug", ylab="mean number
of errors", main="Keppel Table 11.8")

Keppel Table 11.8

. food deprivatio There are a bunch of optional
1 e Lhow parameters you can set, such as
1 adjusting the y limits, or moving
_ \ around the legend. We used the

i default values, but you can easily
change them. See:

1 - > help(lineplot.CI)

15

10

mean number of errors

o 1 Remember that you can only use this
type of plot after loading “sciplot”
’ with the /ibrary command.

control drugX drugY

type of drug

This kind of plot is useful for an initial inspection of the data. The lines make it easy to see the interaction, and it
uses individual standard errors so we can eyeball homogeneity of variance. But you probably wouldn't want to
use it in a publication.

610-R4: 2-way between designs
Moore & Amato

Make a Snazzy Bar Graph

Create a matrix of the group means. .
> mm = tapply(dl$errors, list (dlSdrug, dlS$food), mean) .

Then draw a graph with the minimum amount of information on it.
> graphl = barplot (mm, beside=T, legend=T)

That graph gets the job done, but it's pretty bare bones. One of R's biggest strengths .
is the amount of control it allows over graphs. Users can customize nearly all aspects .
of the graph by setting optional parameters of the barp/of() function. The same
parameters are also used for other types of graphs.

> graph?2 = barplot (mm, beside=T, ylim=c(0,16), space=c(.1,.8),
main="Search Task Errors", xlab="hours of food deprivation",
ylab="mean number of errors", legend =T, axis.lty=1,
col=c ("darkseagreend", "deepskyblued"))

Search Task Errors

beside=T groups the bars next to each other
© B control ylim = ¢(0,16) specifies the y-axis min and max
= o space = c(.1,.8) | space between bars; as proportion of bar width

I #is space between bars of same group
2" is space between bars of different groups

e main main title for the graph

5 | xlab label for the x-axis

% ylab label for the y-axis

g legend =T display a legend

B axis.lty=1 draws a line for the x-axis
“] line type

lowercase letter “L” after the dot
number “one” after equal sign

col= colors for the bars

1-hour 24-hrs

o - .
hours of food deprivation

Calculate the pooled standard error of the means. gy =1/ MSgas/n
> pooled.se = sqrt(18.33/4)

Define the superpose() function. Note that we only need to define it once, and then can use it to make as many
graphs as we want.
> superpose.eb = function (x, y, ebl, ebu = ebl, length = 0.08, ...)
arrows (x, y + ebu, x, y - ebl, angle = 90, code = 3,
length = length, ...)

Draw error bars on the graph.
> superpose.eb (x=graph2, y=mm, ebl=pooled.se, col="black", lwd=2)

‘= x coordinates for the error bars, or simply the
name of the graph
y= y coordinates for the center of the error bars,
which is the group means
ebl = length of the error bars, which should be 1 se
in each direction
col = color for the error bars
Iwd = thickness of the error bar lines (/ine width)

610-R4: 2-way between designs
Moore & Amato

3.Sim p le main effects. Test the simple main effect of drug, at both levels of food deprivation.

1. Separate the data into subsets, based on "food"
2. Run an ANOVA testing the effect of "drug" in each subset
3. Manually recalculate F and p for "drug" in each ANOVA, using MSg,sp from the omnibus ANOVA.

Make subsets of the data for each level of "food".
> deprived.lhour = subset(dl, food=="1l-hour")
> deprived.24hours = subset(dl, food=="24-hrs")

Check that the number of observations in each subset is half of the total observations.

> nrow (deprived.lhour) # nrow()returns the number of rows in a dataframe
[1] 12
> nrow (deprived.24hours)
[1] 12
> nrow (dl)
[1] 24
Conduct separate ANOVAs for the simple main effect of drug in each subset.
> drug.at.lhour = aov(errors~drug, data=deprived.lhour)
> summary (drug.at.lhour, intercept=T)
Df Sum Sg Mean Sg F value Pr (>F)
(Intercept) 1 972 972 60.75 2.724e-05 **+*
drug 2 248 124 7.75 0.01104 *
Residuals 9 144 16
> drug.at.24hours = aov (errors~drug, data=deprived.24hours)
> summary (drug.at.24hours, intercept=T)
Df Sum Sg Mean Sg F value Pr (>F)
(Intercept) 1 1452 1452.00 70.2581 1.522e-05 ***
drug 2 8 4.00 0.1935 0.8274
Residuals 9 186 20.67

Stop and think! Look at the MS siquar in these simple main effect ANOV As. They differ slightly. Also, compare
dfiesiquar to the original omnibus ANOVA on page 2.

The dfiesiqual are lower in the simple main effect ANOV As. Since we are comfortable that homogeneity of
variance is a reasonable assumption for our data (based on the plot of predicted values against residuals in the
next section), it is probably safe to use the pooled error for these tests. We can do some calculations to use the
pooled error from the overall omnibus ANOVA, and its larger number of df. Sometimes the increased power
from having more df in the denominator of F changes the results dramatically.

Use pooled error to calculate F and p for the simple main effect of drug at 1 hour of food deprivation.
> Fdrug.lhr = 124/18.333 # MSy from "drug.at.1hour", divided by MSigual from "omni"
> Fdrug.lhr
> pf (Fdrug.lhr, 2, 18, lower.tail=F)# askR to calculate a p-value for the new F
[1] 0.006445319

610-R4: 2-way between designs
Moore & Amato

Repeat the calculations for the simple main effect of drug at 24 hours of food deprivation.
> Fdrug.24hr = 4/18.333
> pf (Fdrug.24hr, 2, 18, lower.tail=F)
[1] 0.8060713

Notice that the p-values of the tests with pooled error is slightly smaller than for the tests using partitioned error,
even though MS,,, from the pooled analysis is slightly higher than the partitioned error for drug at 24 hours.
The p-value is slightly lower because the df is so much larger. More df gives more statistical power.

The sum of SSy, in the two partitions should equal SSyre + SSdrexfood 1 the original ANOVA. If it does, we
know we've done things correctly.

> 248 + 8 == 112 + 144

[1] TRUE

4. Check some assumptions

Make the normal QQ plot to check that our data is normally distributed. Susan Archambault from Wellesley
College has this to say about the normal QQ plot:

“The normal Q-Q plot graphically compares the distribution of a given variable to the normal
distribution (represented by a straight line). The straight line represents what our data would look
like if it were perfectly normally distributed. Our actual data is represented by the [circles] plotted
along this line. The closer the [circles] are to the line, the more normally distributed our data looks.”

> ggnorm(dl$errors)

> gqgline (dl$errors)

Normal Q-Q Plot

We want the data to be on the line.
Looks off in the tails, but not by much.
Nothing to get worked up about.

Sample Quantiles

Theoretical Quantiles

Plot predicted values and residuals.
Compute the predicted and residual values from the omnibus ANOVA, and save them as new columns in
dateframe "d1". Note that "omni" is just the name we decided to give the ANOV A when we computed it on
page 2. We could have called it anything.

> dl$pred = predict (omni)

> dlSres = residuals (omni)

610-R4: 2-way between designs
Moore & Amato
Take a look at your error scores, the model’s predicted values, and the residuals all together. Marvel at how
neatly it all matches up.

> checkup = rbind(dl$errors, dlSpred, dlSres)
> checkup

11,21 [,31 [,4) (,5] (,6) [,7) (,8] [,9] [,10] [,11]) f[,12) [,13] (,14] [(,15] [,16] [,17] [,18]) [,19]) [,20] [,21] [,22] [,23] [,24]
1 4 0 713 5 715 9 16 18 13 15 6 10 13 6 18 9 15 14 7 6 13

3 3 3 3 10 10 10 10 14 14 14 14 11 11 11 11 12 12 12 12 10 10 10 10
-2 1 -3 4 3 -5 -3 5 -5 2 4 -1 4 -5 -1 2 -6 6 -3 3 4 -3 -4 3

Now plot the residuals as a function of their predicted cell mean. Tell R to “jitter” the predicted values a little bit
so we can see if there are more than one on top of each other.

> plot (jitter (dl$pred), dlSres, xlab="Predicted Value (Treatment Mean)",
ylab="Residual", main="Predicted vs. Residuals, Keppel Table 11.8")

Put a dotted line at zero so we can judge the spread of the residuals more easily.
> abline (a=0,b=0, 1lty=2) # “lty=2" makes the line dotted. It means “line type”

Predicted vs. Residuals, Keppel Table 11.8

[=T o
o
=+ o O Ls] o []
[w) o]
o — =} o
o
™
=]
B o e e —————
]
v
o o
I
L&] oo o
T - L]
o o o]
© o
I T T T |
4 6 B 10 12 14

Predicted Value (Treatment Mean)

Plotting "pred" against "res" separates the groups along the x-axis in this example, since the only thing the
model is using to predict the value is the cell mean. In this example, two of the groups have similar treatment
means (at 10), so they are overlapping.

Looks like the treatment group with the lowest mean has the smallest variance, but the differences are not too
dramatic.

610-R4: 2-way between designs
Moore & Amato

It's also useful to group the residuals by a single factor, rather than the group mean like we did above. We can
look at residuals for each group of factor "drug" just like we did on the earlier handout. This time though we'll
jitter the x-values for each point, so they don't end up on top of each other. Note that we are treating "drug" as if
it were a continuous variable, rather than a categoric factor, so we can get this scatterplot.
> plot (jitter (as.numeric(dlSdrug)), dlSres, xlab="Type of Drug ",
ylab="Residuals", main="Residuals by Drug Type")

> abline (a=0,b=0, 1ty=2)

Residuals by Drug Type

© — o

oo o

Residuals
0
|

10 15 20 25 30

Type of Drug

What happens if we don't treat "drug" as a continuous factor? We get a graph like the following, which is
actually quite useful.

> plot(dl$drug, dlSres, xlab="Type of Drug ", ylab="Residuals",
main="Residuals by Drug Type")
> abline (a=0,b=0,1ty=2)

Residuals by Drug Type

w o —_—
1

Residuals
0
|

'
o R —
T

T T T
control drugX drugY

Type of Drug

