Behavioral Evidence of Prolonged Interhemispheric Transfer Time Among Psychopathic Offenders

Kristina D. Hiatt
University of Oregon

Joseph P. Newman
University of Wisconsin—Madison

Several lines of evidence suggest the possibility of abnormal interhemispheric communication in psychopathy, but there have been few direct empirical studies. To address this gap in the literature, the authors examined one important aspect of interhemispheric communication, the efficiency with which information is transferred across the corpus callosum. Using A. T. Poffenberger’s (1912) paradigm for estimating interhemispheric transfer time (IHTT) from simple motor responses to lateralized stimuli, the authors found a substantially prolonged IHTT among psychopathic criminals relative to nonpsychopathic criminals. This prolonged IHTT was somewhat more pronounced when participants were using their right hand to respond. This study provides initial behavioral evidence of slowed interhemispheric transfer in psychopathy.

Keywords: psychopathy, interhemispheric transfer, callosal transfer

In recent years there has been growing appreciation of the importance of coordinated exchange of information between the cerebral hemispheres. Numerous studies have demonstrated that information processing is dynamically coupled or decoupled across the cerebral hemispheres in response to task demands (Weissman & Banich, 2000; Weissman & Compton, 2003). Efficient integration of information across the hemispheres improves performance on complex, multidimensional tasks, presumably because of the advantage of parallel processing, whereas strategic decoupling can reduce interference in situations demanding selective attention (Banich, 1998; Belger & Banich, 1992; Compton, Heller, Banich, Palmieri, & Miller, 2000; Mikels & Reuter-Lorenz, 2004). This dynamic, adaptive coordination of processing across the hemispheres is believed to rely heavily on the integrity of the corpus callosum, the major tract of fibers connecting the cerebral cortices of the left and right hemispheres.

Although often overlooked, there have been recurrent indications of abnormal interhemispheric communication among psychopathic individuals. The earliest evidence came from abnormal functional asymmetries on lateralized processing tasks. The nature of these deficits suggested context-dependent abnormalities in the distribution of processing across the two hemispheres (for discussion, see Hare, 1998; Hiatt, Lorenz, & Newman, 2002). More recently, Kosson (1996, 1998) has developed the left-hemisphere activation (LHA) hypothesis, which proposes that the antisocial and dysregulated behavior of psychopathic individuals is due in part to deficient information processing under conditions that place substantial demands on the left hemisphere. Kosson and colleagues have produced considerable support for information-processing deficits under conditions of LHA (e.g., Kosson, 1996, 1998; Llanes & Kosson, 2006). Although no specific mechanism is proposed by the LHA hypothesis, psychopathic individuals’ deficits under LHA conditions appear to be consistent with dynamic interhemispheric integration abnormalities. Further indication of interhemispheric processing abnormalities in psychopaths comes from Raine et al.’s (2003) striking evidence of increased callosal volume among community volunteers with strong psychopathic features. Raine et al. interpreted this increased callosal volume as suggestive of facilitated interhemispheric communication, and they provided some indirect evidence for this proposal.

Together, these findings strongly suggest interhemispheric processing abnormalities in psychopathy. One important component of interhemispheric processing is the efficiency with which simple information is transferred from one hemisphere to the other. Inefficient sharing of information between the two hemispheres can be expected to interfere with flexible and adaptive interhemispheric integration. The time required to transfer information from one hemisphere to the other, commonly referred to as interhemispheric transfer time (IHTT), can be estimated with a simple behavioral paradigm originally developed by Poffenberger (1912). Although a number of studies suggest interhemispheric communication deficits in psychopathic individuals, there are no published studies of simple IHTT. This represents a substantial gap in the literature, as higher level functions, such as dynamic integration, likely depend on the efficiency of simple transfer.

In the present study, we address this gap in the literature by providing a simple and direct test of the efficiency of interhemispheric communication among psychopathic offenders, using Poffenberger’s (1912) paradigm for estimating IHTT from simple motor responses to lateralized stimuli. This paradigm involves measuring manual reaction time (RT) to brief, salient, unpatterned visual stimuli (e.g., flashes of light) presented to either the left visual field (LVF) or right visual field (RVF). IHTT is estimated by calculating the crossed–uncrossed difference (CUD), such that RTs for trials in which the stimulus is presented to the same hemisphere that controls the motor response (uncrossed) are sub-

Kristina D. Hiatt, Department of Psychology, University of Oregon; Joseph P. Newman, Department of Psychology, University of Wisconsin—Madison.

Correspondence concerning this article should be addressed to Kristina D. Hiatt, Department of Psychology, Child and Family Center, University of Oregon, 195 West 12th Street, Eugene, OR 97401. E-mail: kdhiatt@uoregon.edu

Neuropsychology
2007, Vol. 21, No. 3, 313–318
Copyright 2007 by the American Psychological Association
0894-4105/07/$12.00 DOI: 10.1037/0894-4105.21.3.313
tracted from the RTs for trials in which the stimulus is presented contralateral to the hemisphere that controls the motor response (crossed).

Poffenberger’s (1912) paradigm allows investigation of Kosson’s (1996, 1998) LHA hypothesis because response hand is alternated across blocks of trials. Right-hand response blocks can be assumed to produce greater LHA relative to left-hand response blocks (Kinsbourne, 1970; McElroy & Seta, 2004). Thus, we also examined IHTT with respect to Kosson’s LHA hypothesis, which would suggest that any abnormalities in psychopathic individuals’ IHTT would be specific to right-handed response blocks.

Method

Participants

Participants were 93 Caucasian male inmates with PCL–R scores in either the psychopathic (30 or higher; \(n = 54 \)) or nonpsychopathic (20 or lower; \(n = 39 \)) range. Participants were drawn from either a medium-security (\(n = 51 \)) or maximum-security (\(n = 42 \)) prison in south-central Wisconsin. File screens were used to exclude individuals who were over 45 years of age, were prescribed psychotropic medication, or scored below the fourth-grade reading level on prison-administered achievement tests. Participants were also excluded if they were left-handed according to their score (greater than 21) on the Hand Usage Questionnaire (Chapman & Chapman, 1987) or had borderline or lower intelligence (Wechsler Adult Intelligence Scale—Revised [Wechsler, 1981] estimate less than 70) as assessed by the Shipley Institute of Living Scale (Zachary, 1986). All participants gave informed consent and received modest financial compensation for their participation.

Psychopathy Assessment

PCL–R (Hare, 2003) ratings were made by trained research staff following a 60–90-min structured interview and a review of the participant’s prison file. The PCL–R is a 20-item checklist of behaviors and characteristics associated with psychopathy. Each item is scored 0, 1, or 2, for a maximum total score of 40. The reliability and validity of the PCL–R is well documented (e.g., Hare, 1991, 1996; Hare & McPherson, 1984; Hart & Hare, 1997; Kosson, Smith, & Newman, 1990). Following the recommendations of Hare (1991), and in accord with standard practice, individuals scoring 30 or above were classified as psychopathic, individuals scoring 20 or below were classified as nonpsychopathic controls, and individuals scoring between 20 and 30 (“middles”) were excluded from categorical data analyses.

Additional Measures

In addition to investigating overall IHTT, the design of Poffenberger’s (1912) paradigm allows investigation of Kosson’s (1996, 1998) LHA hypothesis because response hand is alternated across blocks of trials. Right-hand response blocks can be assumed to produce greater LHA relative to left-hand response blocks (Kinsbourne, 1970; McElroy & Seta, 2004). Thus, we also examined IHTT with respect to Kosson’s LHA hypothesis, which would suggest that any abnormalities in psychopathic individuals’ IHTT would be specific to right-handed response blocks.
hypotheses specifically to low-anxious groups. This strategy facilitates comparison with existing studies that do not assess anxiety while also allowing examination of anxiety/neuroticism as a potential moderator of interhemispheric transfer efficiency. We assessed anxiety using the Welsh Anxiety Scale (WAS; Welsh, 1956), a self-report measure of trait anxiety. Median splits on the WAS were used to classify participants into high- and low-anxious groups for data analyses (for evidence regarding the validity of the WAS for distinguishing psychopathic subgroups, see Newman, MacCoon, Vaughn, & Sadeh, 2005; Schmitt & Newman, 1999).

Task and Procedure

Participants returned approximately 1–4 weeks following the interview to complete the interhemispheric transfer task, which was administered as one of four to six counterbalanced tasks during a 1-hr testing session. Participants were tested individually by a male experimenter who was blind to participants’ group membership. The task was developed following standard methodology for Poffenberger’s (1912) paradigm (see Bashore, 1981). Each trial began with a fixation cross in the center of the screen that remained present throughout the trial. At a variable interval of 1,000 ms, 1,500 ms, 2,000 ms, or 2,500 ms following appearance of the fixation cross, the imperative stimulus (“#”) occurred for a duration of 150 ms in either the RVF or LVF. This was followed by a 1,500-ms intertrial interval. Participants completed four blocks of 40 trials each, with response hand alternating between blocks in the following order: right hand, left hand, right hand, left hand. For right-hand blocks, participants responded by pressing the J key on a standard keyboard with their right index finger. For left-hand blocks, they pressed the F key with their left index finger. Targets were presented approximately 3.1° to the left or right of the central fixation cross. Stimuli were presented in white font on a black background.

Trials with RTs less than 150 ms or greater than 1,500 ms were excluded from analyses. The CUD was computed for each participant by calculating the difference between mean RT on crossed (RVF stimulus on left-hand blocks, LVF stimulus on right-hand blocks) and uncrossed (LVF stimulus on left-hand blocks, RVF stimulus on right-hand blocks) trials. Participants performing greater than 2.5 standard deviations below the mean for accuracy (1 psychopathic participant), or greater than 2.5 standard deviations above or below the mean for RT (2 control participants), were excluded from analysis. To achieve homogeneity of variance, we also excluded participants from analysis if their CUD was greater or less than 2.0 standard deviations from their group mean (1 control, 2 psychopathic participants). This resulted in analyzing data from 87 participants (36 controls, 51 psychopathic participants).

Results

Preliminary Analyses

Overall accuracy was 99.3% (range = 96%–100%, or 153–160 of 160 trials). Psychopathic and control participants did not differ with respect to overall mean RT, $F(1, 85) = 0.13, p > .70$ ($M = 320.91$ ms, $SD = 42.54$; and $M = 317.49$ ms, $SD = 46.06$; for psychopathic and control participants, respectively). Multivariate analysis of mean RT for each of the four trial types with psychopathy as the grouping variable failed to reveal any significant differences between psychopathic and control participants (all $Fs < 1.0, all ps > .40$). Mean RTs by trial type are presented in Table 1. There were no group differences in estimated Wechsler Adult Intelligence Scale—Revised IQ, $F(1, 85) = 0.02, p > .80$ ($M = 101.37, SD = 11.58$; and $M = 101.73, SD = 10.28$; for psychopathic and control participants, respectively), or age, $F(1, 85) < 0.01, p > .90$ ($M = 30.19, SD = 7.38$; and $M = 30.31, SD = 6.50$; for psychopathic and control participants, respectively). As expected, a significant, positive CUD was obtained across participants, indicating slower responses on crossed versus uncrossed trials, $t(86) = 6.41, p < .001$ ($M = 6.73, SD = 9.79$). To examine possible effects of prison site, we conducted an initial analysis of variance on CUD with prison site, anxiety, and psychopathy as the grouping variables. This analysis revealed no main effects or interactions involving site (all $Fs < 1.0, all ps > .35$). Data were therefore collapsed across site for all subsequent analyses.

Primary Analyses

Overall CUD. Group differences in CUD were examined by means of a 2 (psychopathy or control) × 2 (high or low anxiety) analysis of variance with CUD as the dependent variable. This analysis revealed a significant main effect for psychopathy, $F(1, 83) = 4.27, p < .05$ (partial $\eta^2 = .05$), with psychopathic participants showing a larger overall CUD than controls ($M = 8.71$ ms, $SD = 10.62$ for psychopathic participants; $M = 3.92$ ms, $SD = 7.77$ for controls). There were no significant effects involving anxiety (all $Fs < 1.8, ps > .19$).

Response hand analyses. To examine group differences in CUD as a function of response hand, we calculated the CUD separately for left- and right-hand trial blocks, and we conducted a repeated measures analysis on CUD with psychopathy as the grouping variable and response hand as the repeated measure. This analysis revealed a significant Hand × Anxiety × Psychopathy interaction, $F(1, 83) = 5.13, p < .05$ (partial $\eta^2 = .06$), reflecting a significant Anxiety × Psychopathy interaction for left-hand trial blocks, $F(1, 83) = 7.22, p < .01$ (partial $\eta^2 = .08$), but not right-hand trial blocks ($F < 1.0, p > .35$). For right-hand trial blocks, there was a significant main effect of psychopathy, $F(1, 83) = 4.92, p < .05$ (partial $\eta^2 = .06$), irrespective of anxiety, with psychopathic participants showing a larger CUD than controls ($M = 10.90, SD = 16.42$ for psychopathic participants; $M = 2.50, SD = 3.05$ for control participants).

Table 1

Mean Reaction Times (in Milliseconds) by Response Hand and Visual Field

<table>
<thead>
<tr>
<th>Response hand</th>
<th>Visual field</th>
<th>Control</th>
<th>Psychopathic</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>M</td>
<td>SD</td>
</tr>
<tr>
<td>Left</td>
<td>Left</td>
<td>312.32</td>
<td>47.02</td>
</tr>
<tr>
<td></td>
<td>Right</td>
<td>317.11</td>
<td>50.00</td>
</tr>
<tr>
<td></td>
<td>CUD</td>
<td>4.79</td>
<td>14.43</td>
</tr>
<tr>
<td>Right</td>
<td>Left</td>
<td>321.78</td>
<td>45.84</td>
</tr>
<tr>
<td></td>
<td>Right</td>
<td>318.73</td>
<td>47.48</td>
</tr>
<tr>
<td></td>
<td>CUD</td>
<td>3.05</td>
<td>17.33</td>
</tr>
</tbody>
</table>

Note. CUD = crossed–uncrossed difference.
For left-hand trial blocks, the Anxiety × Psychopathy interaction indicated that psychopathic participants’ prolonged CUD was specific to low-anxious groups (M = 9.41, SD = 15.05 for psychopathic participants; M = −0.22, SD = 12.82 for controls); among high-anxious groups, psychopathic participants’ CUD was not significantly different from controls’ CUD.1 Response hand did not significantly interact with either psychopathy or anxiety alone.2

Supplementary Analyses

We also conducted dimensional analyses using the entire sample. Bivariate correlations were calculated between total PCL–R score, Factor 1 score, Factor 2 score, and CUD, CUD for right-hand responses, and CUD for left-hand responses. These correlations are presented in Table 2. There was a significant correlation between total PCL–R score and overall CUD (r = .22, p < .05). Trend-level correlations were observed between each factor score and overall CUD (r = .19, p = .06; and r = .18, p = .09; for F1 and F2, respectively). Additionally, there was a trend-level correlation between CUD for left-hand responses and Factor 1.

Discussion

The principal goal of this study was to determine whether psychopathy is associated with an abnormal IHTT. The results of the overall CUD analysis provide clear evidence of a prolonged CUD among psychopathic offenders, suggesting delayed transfer of information between the cerebral hemispheres. Although nonpsychopathic offenders demonstrated an average CUD of 3.92 ms, which falls within the expected range for healthy populations, psychopaths’ average CUD was more than twice as long. Psychopathic participants’ prolonged CUD was also evident in correlational analyses showing a significant positive correlation between PCL–R total score and the CUD. This evidence of prolonged IHTT among psychopathic individuals has important implications, as it suggests a fundamental deficit that occurs without complex processing demands (e.g., competing response contingencies, divided attention) and could have a broad and pervasive influence on cognitive and affective processing among individuals with psychopathy.

It was also predicted on the basis of Kosson’s (1996, 1998) LHA hypothesis that psychopathic individuals would show especially slow transfer on right-handed trial blocks. This finding was partially supported by the three-way Hand × Anxiety × Psychopathy interaction, which revealed a main effect of psychopathy for right-handed but not left-handed trial blocks. On left-handed trial blocks, an unexpected interaction of psychopathy and anxiety was found, such that the CUD was prolonged only for low-anxious psychopathic participants relative to low-anxious controls. High-anxious psychopathic and control participants did not differ. The significance and implications of the anxiety interaction will need to be clarified by future studies. It is possible that this effect is related to baseline hemispheric activation, as anxiety has been associated with changes in resting hemisphere activity (Davidson, 1993; Heilman, Bowers, & Valenstein, 1993; Heller, Nitschke, Etienne, & Miller, 1997). However, this interpretation is speculative. More important for the present study, anxiety did not interact with the prolonged overall CUD, nor with the prolonged CUD on right-handed trial blocks. In addition, when the CUD from left-handed trials was collapsed across anxiety, psychopathic participants still tended to show a longer CUD than controls. Overall, this pattern of results suggests robust overall slowing of interhemispheric transfer for both high- and low-anxious psychopathic participants, with somewhat more pronounced slowing under right-hand response conditions.

The somewhat more pronounced slowing of interhemispheric transfer on right-hand response blocks could be interpreted in either of two ways. First, the right-hand response condition can be interpreted as an LHA condition, given that right-hand motor responses are controlled by the left hemisphere. From this perspective, the stronger effects for right-hand response blocks can be viewed as consistent with Kosson’s (1996, 1998) hypothesis of impaired information processing under LHA conditions. However, this interpretation also suggests a refinement of the LHA hypothesis, as psychopathic individuals’ deficits under LHA conditions were specific to the measure of interhemispheric transfer rather than overall performance (i.e., performance on both crossed and uncrossed trials). Alternatively, the longer CUD for right-hand response blocks can be interpreted with respect to the direction of

1 At the suggestion of an anonymous reviewer, we also conducted separate follow-up analyses of the three-way Hand × Anxiety × Psychopathy interaction for low-anxious and high-anxious groups. For low-anxious groups, there was a significant main effect of psychopathy, F(1, 45) = 6.46, p < .05 (partial η² = .13), and the Hand × Psychopathy interaction was not significant. For high-anxious groups, the main effect of psychopathy was not significant, but there was a significant Hand × Psychopathy interaction, F(1, 38) = 5.10, p < .05 (partial η² = .12), with psychopathic participants showing a slower CUD on right-hand trials and control participants showing a slower CUD on left-hand trials.

2 For controls only, there was a significant Response Hand × Anxiety interaction, F(1, 34) = 5.54, p < .05 (partial η² = .14), such that low-anxious controls showed a larger CUD on right-hand trials, whereas high-anxious controls showed a larger CUD on left-hand trials. To our knowledge, there are no existing studies of the relationship between anxiety and simple IHTT, although there are a number of reports showing that anxiety modulates interhemispheric integration (e.g., Compton et al., 2000). Full examination of controls’ anxiety effect is beyond the scope of the present article, but it would be useful to investigate these effects in future studies.

Table 2

<table>
<thead>
<tr>
<th>Difference type</th>
<th>PCL–R total (N = 103)</th>
<th>PCL–R Factor 1 (n = 103)</th>
<th>PCL–R Factor 2 (n = 96)</th>
</tr>
</thead>
<tbody>
<tr>
<td>CUD</td>
<td>0.22**</td>
<td>0.19*</td>
<td>0.18*</td>
</tr>
<tr>
<td>CUD–RH</td>
<td>0.14</td>
<td>0.06</td>
<td>0.14</td>
</tr>
<tr>
<td>CUD–LH</td>
<td>0.14</td>
<td>0.18*</td>
<td>0.09</td>
</tr>
</tbody>
</table>

Note. Factor scores were calculated as recommended by Hare (1991, 2003). Psychopathy Checklist—Revised (PCL–R) factor scores were not calculated if more than two items for the factor were unable to be scored (e.g., because of lack of information), which resulted in missing Factor 2 scores for 7 participants. CUD = crossed-uncrossed difference; CUD–RH = CUD for right-hand responses; CUD–LH = CUD for left-hand responses.

* p < .10. ** p < .05.
transfer across the hemispheres. When participants are responding with their right hand, uncrossed trials occur when the stimulus is initially presented to the RVF/left hemisphere (i.e., the hemisphere that also controls the right-hand motor response). Crossed trials occur when the stimulus is initially presented to the LVF/right hemisphere. The CUD for right-handed trials thus provides an estimate of the time needed to transfer stimulus information from the right hemisphere (site of initial stimulus presentation) to the left hemisphere (site of response control). Therefore, the stronger effects for right-hand response blocks could indicate relatively slower transfer of information from the right hemisphere to the left hemisphere (right-hand CUD) rather than impaired transfer under LHA conditions. Because direction of CUD transfer and response hand are confounded in Poffenberger’s (1912) design, it is not possible to differentiate between these two interpretations with the present data.

Given that at least some degree of communication and coordination between the hemispheres is presumed to occur under most natural conditions, even a slight delay in information transfer across the hemispheres could lead to wide-ranging disruptions in information processing. These disruptions may be magnified by the different processing biases of the left and right hemispheres, with delayed IHTT causing functions mediated predominantly by the left hemisphere (e.g., approach behavior, language processing) to be relatively unmodulated by functions mediated predominantly by the right hemisphere (e.g., behavioral inhibition, emotion processing) and vice versa. We find it interesting that many of the cognitive and affective abnormalities associated with psychopathy are consistent with poor utilization of right-hemisphere processing under left-hemisphere activating conditions (for further discussion, see Hiatt, 2006; Hiatt & Newman, 2006).

Although the present study provides clear evidence of a prolonged CUD among psychopathic offenders, it also has a number of limitations. First, the behavioral CUD estimate used in the current study is not a direct measure of IHTT. Although behavioral CUD estimates that have used Poffenberger’s (1912) paradigm are widely accepted as an index of callosal integrity, physiological (i.e., event-related potential) measures provide IHTT estimates that are more reliable and more consistent with the biophysics of interhemispheric transmission (see Saron & Davidson, 1989; Saron et al., 2003). Thus, it will be important to confirm our behavioral findings with physiological techniques.

Another limitation of the present study is the lack of eye-gaze verification. We encouraged central fixation by instructing participants to maintain their gaze on the fixation point and by presenting stimuli for a duration that was too brief to allow saccadic eye movements. Further, stimuli were presented unpredictably and with equal frequency to each visual field, and were therefore unlikely to bias attention to one or the other hemisphere. Nevertheless, it is possible that participants’ gaze was not directed to the central fixation stimulus on every trial, and these variations in gaze could have influenced performance. It is also not possible to rule out group differences in fixation compliance, which may have affected the overall pattern of findings.

Finally, response hand order was fixed across all participants, and therefore response hand effects could be confounded by order. As such, the response hand analyses should be interpreted somewhat cautiously until verified by future replications.

Despite these limitations, the present study provides clear and important evidence of a prolonged CUD among psychopathic offenders. Delayed interhemispheric transfer could play a fundamental role in psychopaths’ known affective and cognitive processing abnormalities and should be examined further in future studies. An important first step will be to replicate the current findings with evoked potentials. In addition, imaging technologies have the potential to provide crucial insight into the mechanisms underlying the apparent transfer deficits in psychopathy. The integrity of psychopathic individuals’ callosal fiber pathways could be examined with diffusion tensor imaging. On the basis of the current findings and those of Raine et al. (2003), one might expect increased callosal volume but degradation of fibers in people with psychopathy. Studies of this nature will help to clarify the relationship between structural and functional callosal abnormalities among psychopathic offenders. In addition, functional imaging techniques could be used to examine dynamic patterns of brain activation in bilateral performance paradigms, potentially providing further insight into the behavioral and processing ramifications of interhemispheric transfer deficits among individuals with psychopathy.

References