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Research findings in social and cognitive psychology imply that it is easier to detect angry
faces than happy faces in a crowd of neutral faces [Hansen, C. H., & Hansen, R. D. (1988).
Finding the face in the crowd – An anger superiority effect. Journal of Personality and Social
Psychology, 54(6), 917–924]. This phenomenon has been held to have evolved over phylo-
genetic development because it was adaptive to quickly and accurately detect a potential
threat in the environment. However, across recent studies, a controversy has emerged
about the underlying perceptual versus emotional factors responsible for this so-called
anger superiority effect [Juth, P., Lundqvist, D., Karlsson, A., & Ohman, A. (2005). Looking
for foes and friends: Perceptual and emotional factors when finding a face in the crowd.
Emotion, 5(4), 379–395; Purcell, D. G., Stewart, A. L., & Skov, R. B. (1996). It takes a con-
founded face to pop out of a crowd. Perception, 25(9), 1091–1108]. To tease apart emotional
and perceptual processes, we used neural network analyzes of human faces in two differ-
ent simulations. Results show that a perceptual bias is probably acting against faster and
more accurate identification of anger faces compared to happy faces at a purely perceptual
level. We suggest that a parsimonious hypothesis related to the simple perceptual proper-
ties of the stimuli might explain these behavioral results without reference to evolutionary
processes. We discuss the importance of statistical or connectionist analysis for empirical
studies that seek to isolate perceptual from emotional factors, but also learned vs. innate
factors in the processing of facial expression of emotion.

� 2008 Elsevier B.V. All rights reserved.
1. Introduction

Recently a number of theorists have proposed that the
human emotion system evolved to quickly and accurately
respond to signs of threat in the social environment (e.g.,
Hansen & Hansen, 1988). As a perceptual cue, facial
expressions convey crucial information about possible so-
cial threat. This would suggest that the human emotional
system is biased toward more efficient detection of angry
facial expressions in the social environment (for instance,
in a crowd of other faces). In an initial demonstration,
. All rights reserved.
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Hansen and Hansen (1988) showed that experimental par-
ticipants were particularly efficient at detecting an angry
facial expression in a crowd of neutral faces. However,
enthusiasm for this so-called ‘‘anger superiority effect”
was tempered by follow up work of Purcell et al. (1996),
which showed that the specific angry face used in the
Hansen and Hansen studies possessed (anger-unrelated)
attention-grabbing features, and that when the confound
was controlled, the anger superiority effect disappeared.
Since then, Öhman, Lundqvist, and Esteves (2001) reexam-
ined the anger superiority effect using perceptually con-
trolled schematic faces (drawn schematic faces varying
only at the level of the eyebrows, eyes and mouth), and
found evidence supportive of the basic phenomenon.
computation as a tool to differentiate perceptual from ...
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Because the anger superiority effect has not been
demonstrated convincingly with real human faces, these
differing findings have raised the possibility of a perceptual
bias in favor of the detection of happy faces that competes
with the faster and more accurate recognition of angry
faces embedded among neutral expressions. Indeed, in a
more recent study, Juth et al. (2005), using pictures of hu-
man faces (Fig. 1), found that happy faces were more
quickly and accurately detected than angry faces.

Furthermore, this happiness superiority effect was re-
versed for schematic faces, raising once more the possibility
that a natural perceptual bias (that is not present in con-
trolled schematic faces) overrides the emotional factors in-
volved in the anger superiority effect. In other words,
drawn schematic faces do not have any perceptual vari-
ance: there is only one angry and one happy face to consti-
tute the matrices. This is not the case for real faces; each
real face, even in a set expression the same emotion, is dif-
ferent. Such is true, for instance, of the human faces used by
Juth et al. (2005) which were nonetheless carefully con-
Fig. 1. Four examples of the photographic facial
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trolled for perceptual factors such as color, lighting condi-
tions, background or clothing. Thus, a perceptual bias
related to the simple statistic variability of real human faces
constituting the different emotional categories may exist
and raises the question of the possibility of generalizing a
possible anger superiority effect in the processing of real-
life facial stimuli. In other words, happy faces might be sta-
tistically more differentiated than angry faces from a crowd
of neutral faces and therefore detected more efficiently.
This phenomenon is illustrated in Fig. 2 in order to explain
precisely what do we mean by ‘‘pure perceptual factors”.

In the example provided in the left part of the graph, the
statistical distribution of exemplars from two categories
(for instance, category A for happy and category B for neu-
tral faces) are well-differentiated. There is a little overlap
between the two categories, meaning that the average sim-
ilarity between the two categories is low. In contrast, the
right part of the graph illustrates two categories that are
more difficult to differentiate by a statistical or connection-
ist network in the perceptual space provided by two
arrays that were used by Juth et al. (2005).

computation as a tool to differentiate perceptual from ...



Fig. 2. Example of perceptually distinct (left part of the graph) or overlapping categories (right part of the graph). The bottom part of the figure represents
our specific hypothesis in this paper (namely that happy faces are better differentiated from over angry but also neutral faces).
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dimensions (for instance, category A for angry and cate-
gory B for neutral faces).

The bottom part of Fig. 2 illustrates the specific hypoth-
esis of a perceptual bias acting against superior recognition
of angry faces in the ‘‘face in the crowd paradigm”. We as-
sume that happy faces are perceptually easier than angry
faces to differentiate from neutral faces, resulting of a
greater overlap of perceptual features between angry and
neutral faces than between happy and neutral faces. Note
that this figure is a simple example of a visual representa-
tion of three categories in a two dimensional space. In the
current paper, we work in the 56-dimensional space of the
perceptual layer produced by Gabor receptive fields. Such
high-dimensional space is more difficult to represent
(Pothos & Close, 2008) but the basic idea is exactly the
same as the example represented in Fig. 2, generalized to
a greater than two-dimensional space.
Please cite this article in press as: Mermillod, M., et al. Neural
Cognition (2009), doi:10.1016/j.cognition.2008.11.009
Concerning cognitive and emotional factors, the goal of
an hypothetic fear system aimed at distinguishing rapidly
angry from neutral faces is to find efficiently non-linear
boundaries (or even a linear boundaries if these are suffi-
cient to resolve the task) across the three categories. Thus,
the basic assumption of the anger superiority effect is that
the human cognitive system has evolved to more effi-
ciently recognize anger than happy faces among a crowd
of neutral distracters because of survival purpose, irrespec-
tive to the perceptual structure of the three categories.
However, we suggest that a more parsimonious explana-
tion, related to the simple perceptual distribution of the in-
puts, is able to account for the previous behavioral data.

In order to test the statistical properties of the inputs,
we needed a computational tool. In addition to statistic
analysis, neural computation is a very useful method for
the present purpose because it is not submitted to possible
computation as a tool to differentiate perceptual from ...
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innate influence. Different perceptual data can be submitted
to exactly the same artificial cognitive system to test the
hypothesis that the perceptual variability of the three cat-
egories is sufficient to simulate the previous behavioral re-
sults. We tested the statistical properties of these human
facial expressions at a purely perceptual level using the
same stimuli (KDEF database, Lundqvist & Litton, 1998)
and the same experimental design (distractors and target
faces directed or averted toward the observer) as those
used in the extant major publications.

It is important to note that we do not argue that the
present neural computational modeling represents a
neurobiological model of happy or angry face perception
per se. Rather, we recognize it as a computational tool that
allows us to evaluate the distinctive statistical properties
of facial expressions of emotion. In our work we used
one of the most broadly accepted models of vision, based
on Gabor wavelet filtering, applied to face perception
(Lyons, Akamatsu, Kamachi, & Gyoba, 1998; Lyons,
Budynek, & Akamatsu, 1999; Wiskott, 1997). We associ-
ated the vision model with one of the most frequently used
models of cognitive processes, based on connectionist neu-
ral networks, in order to stay as close as possible to the
main references in neural network modeling applied to
recognition of facial expressions of emotion (Dailey &
Cottrell, 1999; Dailey, Cottrell, Padgett, & Adolphs, 2002;
Lyons et al., 1999; Zhang, Lyons, Schuster, & Akamatsu,
1998).

It should be pointed out that the results of such mod-
eling are determined largely by the perceptual structure
of the stimuli rather than by the algorithm used. For
example, the data in the right panel of Fig. 2 will be
more difficult to categorize than the data reported on
the left part of the figure when submitted to a back-
propagation algorithm (i.e., multi-layer perceptron), but
also to other neural network algorithms such as self-
organizing map (SOM), radial basis function (RBF) net-
works, or a single layer auto-encoder based on the Heb-
bian learning rule (Abdi, Valentin, Edelman, & O’Toole,
1995). Even statistical analysis such as discriminant anal-
ysis (Lyons et al., 1999), multi-dimensional scaling or
PCA will provide similar results depending on the statis-
tic variability of the data. We chose to use a standard
back-propagation algorithm for three reasons. First, the
introduction of parallel distributed processes (PDP) by
Rumelhart, Hinton, and McClelland (1986) constituted a
scientific revolution in the understanding of cognitive
processes. PDP models provide an innovative under-
standing of a wide range of psychological data (McClel-
land & Rogers, 2003). Second, at a computational level,
PDP networks constitute a powerful training algorithm
that can reveal non-linear boundaries even in complex
high-dimensional spaces (Rumelhart et al., 1986). Third,
back-propagation algorithms are one of the most widely
used and standardized type of neural network in the
field of cognitive science (McClelland & Rogers, 2003).
More importantly, with respect to the general aim of
the current paper, previous work has shown that this
technique is particularly efficient in the recognition and
categorization of emotional facial expressions (Dailey
et al., 2002; Lyons et al., 1999; Zhang et al., 1998).
Please cite this article in press as: Mermillod, M., et al. Neural
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Concerning the choice of parameters, again, an infinite
number of parameters are available. For example, changing
the learning rate or the momentum will change the speed
or the efficiency of training. Therefore, we chose the same
parameters as other publications (French, Mareschal,
Mermillod, & Quinn, 2004; Mermillod, Chauvin, & Guyader,
2004; Mermillod, Guyader, & Chauvin, 2005a, 2005b) with
the general goal of having the maximum of efficiency of
the neural network for visual categorization tasks. How-
ever, it is important to note that changing a parameter will
change the quality of training in the same manner across
the different experimental conditions (actually, the back-
propagation algorithm is highly standardized and there is
actually less possibility of misrepresenting the data with
such an algorithm than with ANOVA for statistical analyzes
for example). In other words, increasing the learning rate
increases the speed of training equally in the different con-
ditions. Nonetheless, overlapping categories will always be
more difficult to recognize than well-differentiated catego-
ries (see Fig. 2) as long as the same parameters are kept
constant across all training conditions.

The first simulation presented below is a general test of
the neural network’s classification of the happy, anger and
neutral faces used by Juth et al. (2005), when the three cat-
egories are presented together to the network. Simulation
2 is a specific simulation of the experimental design used
by Juth et al. (2005), which consists of detecting a discrep-
ant face (either anger or happy face) in a crowd of neutral
distractors.

2. Simulation 1

2.1. Method

2.1.1. Connectionist network
The connectionist model was decomposed in two main

stages. The first component was a perceptual model of vi-
sion simulating V1 neuron receptive fields that are sensi-
tive to different orientations and spatial frequency
channels. It has been shown that visual information can
be efficiently compressed by Gabor filter decomposition
and, most importantly, with a remarkable biological plausi-
bility (Jones & Palmer, 1987; Jones, Stepnoski, & Palmer,
1987). Dailey et al. (2002), Lyons et al. (1999), Zhang et al.
(1998) all demonstrated that Gabor filters combined with
back-propagation neural networks or discriminant ana-
lyzes are able to successfully classify human facial expres-
sions in a reliable way comparable to human participants.

Our current neural network is very similar to their mod-
el except that Gabor filters were applied in the frequency
domain (or Fourier domain) instead of the spatial domain.
Multiplying a Gabor filter in the Fourier domain is equiva-
lent to convolving it into the spatial domain. One character-
istic of this method is that it does not coding for spatial
location: Applying Gabor filters in the spectral domain ren-
ders the representation of the image (i.e., the output com-
puted by the Gabor filters) translation invariant, exactly
like V1 complex cells which are pooling information of dif-
ferent V1 simple cells sensitive to the same scale and orien-
tation but at different place of the visual field (De Valois &
De Valois, 1988). The advantage of this method is that it
computation as a tool to differentiate perceptual from ...
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avoids the use of PCA to compress visual information. In
other words, the compression step necessary for subse-
quent neural computation algorithms occurs at the level
of the Fourier transform instead of PCA. Note that the
dimensionality reduction of the input space realized by PCA
(Dailey et al., 2002; Lyons et al., 1999) is also losing spatial
location. Thus, the Fourier transform avoids the use of PCA
to reduce the large amount of information when Gabor fil-
ters are applied on a sliding window in the spatial domain.

We applied a single bank of fifty-six Gabor filters corre-
sponding to seven spatial frequency bands (one octave per
spatial frequency channel) and eight different orientations
(0, p/8, 2p/8, 3p/8, 4p/8, 5p/8, 6p/8, 7p/8), with respect to
biological data (De Valois & De Valois, 1988). The energy
coefficients provided by the Gabor filters were computed
by multiplying the local energy spectra by the function of
the Gabor filter and taking the average energy value pro-
vided by the filter (computational details are provided in
the Appendix). Thereafter, the second component is a
back-propagation neural network whose aim is to classify
the output vectors provided by the Gabor filters (Dailey &
Cottrell, 1999; Dailey et al., 2002; Mermillod, Vuilleumier,
Peyrin, Alleysson, & Marendaz, in press; Mermillod et al.,
2005a, 2005b).

The neural network was used for Simulation 1 in a het-
ero-associative mode similar to Dailey et al. (2002) as de-
scribed in the Section 2.1.3. The synaptic weights were
adjusted by means of the standard back-propagation algo-
rithm (Rumelhart et al., 1986, see Appendix for details). As
mentioned above, our connectionist network was not used
here as a model of the entire human cognitive system, but
rather constituted a computational tool that allowed us to
analyze the subtle and distinctive statistical properties of
the facial expressions. Put differently, we used neural net-
work modeling as a simple non-linear classification system
applied to the different emotion cues provided by the facial
expressions of emotion.

2.1.2. Stimuli
For all simulations, the stimuli were the original images

used in Juth et al. (2005), taken from the Karolinska directed
emotional faces set (KDEF, Lundqvist & Litton, 1998). These
included 540 human faces (half were male and half were fe-
male faces) from three categories (60 neutral faces, 60 angry
faces and 60 happy faces). Each of 60 different individuals
displayed the three emotional expressions (neutral vs. an-
gry vs. fearful expression), in a directed (full-frontal) or
averted (half-profile) to �45� or averted to +45� viewpoint.
Color images were transform to 256 gray-level scale for
computational reasons and a Hann window was applied in
order to avoid over-representation of cardinal orientations
(due to image edges) in the spectral domain.

2.1.3. Procedure
In these first simulations, we used the standard hetero-

association training algorithm to associate each of the dif-
ferent category exemplars with a specific output vector
coding for them. All training categories were learned to-
gether by the neural network. For each stimulus, 56 Gabor
filters were applied on the original image in order to com-
pute 56 descriptors coding for the local energy spectra of
Please cite this article in press as: Mermillod, M., et al. Neural
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the image. Then, the length-56 energy vectors were associ-
ated by a 3-layer back-propagation network with their
suitable code category (100 for angry faces, 010 for happy
faces and 001 for neutral faces), and a new image from the
training set was coded and associated by the neural net-
work in an iterative process.

The network architecture consisted of 56 input units, 28
hidden units and 3 output units. Note that the size of the
hidden layer, as the number of epochs or the value of the
learning rate, does not have implications at a qualitative le-
vel. The only qualitative constraint concerning the hidden
layer is to produce a bottleneck from the input to the out-
put layer in order to reduce the dimensionality from the
perceptual input to the categorical output layer. At a quan-
titative level, the larger the hidden layer or the number of
epochs, the better the training of the neural network. How-
ever, any slight improvement of performance related to
these basic parameters was equivalent in all training con-
ditions. Here, while keeping exactly the same architectures
and parameters for neural networks in all training condi-
tions, we were able to apply the most standard type of con-
nectionist network, with the most common training
regime, in order to test for basic statistical properties of
happy, angry and neutral stimuli. The learning rate was
fixed to 0.1 and momentum to 0.9. The goal of the back-
propagation network was to create non-linear category
borders between the three perceptual categories.

2.1.4. Training phase
Each run began with a random selection of 90 training

exemplars (30 angry, 30 happy and 30 neutral faces). Then
the training consisted of associating each of the 90 exem-
plars with the appropriate code category for 500 epochs.

2.1.5. Test phase
After the neural network was trained simultaneously on

both expression categories, it was then tested on the 30
remaining novel exemplars from the angry, happy and neu-
tral categories. An output vector was computed by the arti-
ficial neural network after exposure to each input vector.
Then, we applied a winner-take-all procedure on the output
vectors. Our dependent measure was the correct classifica-
tion rate produced by the neural network. Results were
averaged over 50 runs of the above training-test procedure.

3. Results

3.1. Directed (full-frontal) faces

As shown in the confusion matrix presented in Table 1,
the connectionist network produced an average correct cat-
egorization rate of 94% (SE = 0.0074) for new exemplars
from the anger category, 97.1% (SE = 0.0041) for new exem-
plars from the happy category and 91.9% (SE = 0.0084) for
new exemplars from the neutral category. There was a main
effect of category of face on categorization level
(F(2.98) = 15.46, MSE = 0.0023, p < 0.001). For the corre-
sponding first experiment of the original behavioral study
(Juth et al., 2005), the authors obtained an average correct
categorization rate of 92% for happy faces and 88% for
angry faces, the difference was significant. For the rest of
computation as a tool to differentiate perceptual from ...



Table 1
Confusion matrix as a function of the input exemplar, the observed output
and the direction of the processed face.

Input exemplar Observed output

Anger Happy Neutral

Directed (full-frontal) faces
Anger 94.0 4.7 (.0041**) 1.3 (.0698)
Happy 2.5 (.0041**) 97.1 0.4 (.0001**)
Neutral 4.9 (.0698) 3.3 (.0001**) 91.9

Averted (half-profile) faces to +45�
Anger 96.3 2.6 (0981) 1.1 (.1452)
Happy 0.3 (.0981) 97.7 2.0 (.0005**)
Neutral 2.5 (.1452) 2.6 (.0005**) 94.9

Averted (half-profile) faces to �45�
Anger 96.8 2.3 (.004**) 0.9 (.303)
Happy 2.1 (.004**) 94.1 3.7 (.170)
Neutral 0.1 (.303) 4.3 (.170) 95.6

Note: p-Values for exhaustive HSD Tukey comparisons between each pair
of correct categorization are presented parenthetically.
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statistical analyzes, we have chosen to test all possible com-
parisons between each pair of training conditions. Because
of the lost of degrees of freedom, we applied a post-hoc
HSD Tukey test in order to ensure correct statistical p val-
ues. Exhaustive comparisons between each pair of training
conditions for correct categorization rate are also presented
in Table 1. These reveal that the difference between correct
categorization rates for happy faces and angry faces was sig-
nificant as well as the difference between happy faces and
neutral faces, meaning that categorizing happy faces is eas-
ier than categorizing neutral or angry faces. The difference
between angry and neutral faces was smaller and not signif-
icant, highlighting the fact that angry faces were harder
than happy faces to differentiate from neutral faces.

3.2. Averted (half-profile) faces

Table 1 reports the results for faces averted to +45�. As
for directed faces, results showed a correct categorization
rate of 96.3% (SE = 0.0044) for new exemplars from the an-
ger category, 97.7% (SE = 0.0036) for new exemplars from
the happy category and 94.9% (SE = 0.0059) for new exem-
plars from the neutral category. As for directed faces the
main effect of category faces on correct categorization lev-
els was significant (F(2.98) = 7.9, MSE = 0.001, p < 0.001).
Table 1 shows that happy faces were significantly easier
to categorize than angry and neutral faces.

Finally, Table 1 shows the results for faces averted to
�45�. The connectionist network produced an average cor-
rect categorization rate of 96.8% (SE = 0.006) for new exem-
plars from the anger category, 94.1% (SE = 0.006) for new
exemplars from the happy category and 95.6%
(SE = 0.0047) for new exemplars from the neutral category.
There was a main effect of category of face on categoriza-
tion levels (F(2.98) = 5.46, MSE = 0.002, p < 0.01). However,
for averted �45� faces, Table 1 reveals that happy faces
were harder to categorize from angry faces but also that
neither happy nor angry faces produced a significant dif-
ference from neutral faces.
Please cite this article in press as: Mermillod, M., et al. Neural
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4. Discussion

Results generated by the standard hetero-association
process suggest that the categorization of happy faces
by an artificial system based on parallel and distributed
processes should be easier, at a purely perceptual level,
than categorizing angry or neutral faces. This pattern
was obtained for both directed and +45� averted faces.
For �45�, the categorization of happy and angry faces
was not superior to neutral faces. Therefore, the percep-
tual bias toward better recognition of happy faces was
shown as particularly acute for directed and +45� averted
faces.

However, these results alone are not conclusive. In their
behavioral findings, Juth et al. (2005) showed that happy
faces were easier and more accurately recognized than an-
gry faces in a crowd of neutral faces. In the previous simula-
tions, we tested the performance of a non-linear model of
categorization among the three categories together, but
not from one particular (happy or angry face) to another
particular category (neutral face). The next series of simu-
lations was performed to provide a (better) fit of the origi-
nal experimental conditions.

5. Simulation 2

5.1. Method

5.1.1. Connectionist network and stimuli
We used an original training algorithm based on an

auto-encoder (the learning rule of the back-propagation
remains the same). This training algorithm was previously
used in other research (French et al., 2004; Mareschal,
French, & Quinn, 2000) to simulate infants’ perceptual cat-
egorization abilities (i.e., without semantic knowledge).
The training algorithm operates as follows. First, a stimulus
(i.e., an energy vector produced by the Gabor filters) is pre-
sented to the input layer of the network; the resulting acti-
vation is propagated through the neural network and
produces an output activation; then, this output activation
is associated with the theoretically correct vector (the
same as the input vector) and error is back-propagated to
reduce the discrepancy between the observed output vec-
tor and the theoretical output expected; and then a new
vector from the same category is auto-associated with it-
self, and so forth. The aim of the algorithm is to create at
the hidden layer level an ‘‘internal representation” of a spe-
cific category. In the following simulations, this internal
representation, as in the original Juth et al. (2005) paper
is based on the neutral category faces.

Finally, we exposed the trained neural network to new
exemplars, from either the same (neutral) or other stimu-
lus categories (angry and happy faces), and we measured
the Euclidean distance between the expected output and
the observed output. The basic aim of this simulation is
to determine the distance between happy vs. angry faces
to the internal representation of neutral faces. The higher
the Euclidean distance between novel category exemplars,
the higher the perceptual discrepancies between the two
categories (French et al., 2004). Except for this training
computation as a tool to differentiate perceptual from ...



Table 2
p-Values for exhaustive HSD Tukey comparisons between each pair of
Euclidean distances for directed (full-frontal) distractors/directed (full-
frontal) targets.

Training category Training category

Anger Happy Neutral

Directed distractors/directed targets
Anger 0.0001** 0.0001**

Happy 0.0001** 0.0001**

Neutral 0.0001** 0.0001**

M. Mermillod et al. / Cognition xxx (2009) xxx–xxx 7
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algorithm, the neural network learning rule and stimuli
were identical to Simulation 1.

5.1.2. Procedure
In contrast to the procedure of Simulation 1, here the

length-56 energy vectors were not associated with arbitrary
code categories but rather with themselves. Therefore the
network architecture consisted of 56 input units, 52 hidden
units and 56 output units. The learning rate was fixed to 0.1
and momentum to 0.9.

5.1.3. Training phase
Each run began with a random selection of 30 training

exemplars from neutral category faces. Then the training
consisted of associating each of these 30 training exem-
plars with themselves for 500 epochs.

5.1.4. Test phase
After the neural network was trained on neutral cate-

gory expressions, it was then tested on the 30 remaining
exemplars from the novel neutral, angry and happy catego-
ries. We computed the Euclidean distance between the ob-
served output produced by the neural network and the
expected output (i.e., that was identical to the input vector
introduced into the network). Results were averaged over
50 runs of the above training-test procedure.

6. Results

6.1. Directed (full-frontal) distractor faces/directed (full-
frontal) target face

As shown in Fig. 3, when target faces were presented di-
rected toward the observer among directed distractor faces,
happy faces produced an average Euclidean distance of 0.92
(SE = 0.0062) that was significantly higher (Table 2) than
the Euclidean distance produced by angry faces (Euclidean
distance: 0.86, SE = 0.006) and new neutral faces (Euclidean
distance: 0.73, SE = 0.0046). Tukey comparisons were
showing that angry faces were well-differentiated from
new neutral faces, but also that happy faces were signifi-
cantly more distant from new neutral faces than angry
faces. This means that the perceptual distance separating
Training category main effect, F(2, 98)=552.14,p=0.0000

Anger Happy Neutral

Training category
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Fig. 3. Average Euclidean distance produced by directed (full-frontal)
target faces after training on directed (full-frontal) distractors.

Please cite this article in press as: Mermillod, M., et al. Neural
Cognition (2009), doi:10.1016/j.cognition.2008.11.009
happy faces from the perceptual representation of neutral
faces created at the hidden layer level of the neural network
is higher than the perceptual distance separating angry
faces from the perceptual representation of neutral faces.
In other words, the neural network recognized happy faces
as more different from neutral faces than angry faces.

6.2. Averted (half-profile) distractor faces/averted (half-
profile) target face

In this simulation, distractors and target faces were pre-
sented averted to �45� or +45�. For �45� averted distrac-
tors and targets (Fig. 4), happy faces produced an average
Euclidean distance of 1.10 (SE = 0.01) as compared to 1.05
(SE = 0.011) for angry faces and 0.91 for new neutral faces
(SE = 0.009). As for directed faces, all differences were sig-
nificant (Table 3). Similarly, for +45� averted distractors
and targets, happy faces produced an average Euclidean
distance of 1.13 (SE = 0.017). Once again, this value was
significantly higher (Table 3) than the Euclidean distance
for angry faces 1.06 (SE = 0.014) and new neutral faces
(M = 1.01, SE = 0.015).

6.3. Directed (full-frontal) distractor faces/averted (half-
profile) target face

In this simulation, faces were presented averted to �45�
or +45� toward the observer among directed distractor
faces. For �45� averted target faces, the average Euclidean
distance was 1.35 (SE = 0.02) for happy faces, 1.34 (SE =
0.018) for angry faces and 1.09 (SE = 0.011) for neutral
faces. The difference between happy and angry was not
significant (Table 3), indicating that happy faces were as
well recognized as angry faces among neutral distractors.
For +45� averted target faces, happy faces produced an
average Euclidean distance of 1.30 (SE = 0.015), 1.35
(SE = 0.017) for angry faces and 1.09 (SE = 0.011) for neu-
tral faces. This difference was significant (Table 3). As
shown in Fig. 5, this specific experimental condition did
not replicate a better perceptual recognition of averted
happy faces among a crowd of neutral averted faces. How-
ever, when +45� averted target faces and �45� averted tar-
get faces were averaged, as was the case in the original
experiment, there was no remaining significant difference
between angry and happy faces (as shown in synthesis re-
sults below mentioned), suggesting that the perceptual
bias toward better recognition of happy faces is probably
weaker or absent under this specific condition. This result
partially corroborates the original results since this condi-
computation as a tool to differentiate perceptual from ...



Training category maineffect, F(2, 98)=83.694,p=0.0000
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Fig. 4. Average Euclidean distances produced by averted (half-profile) target faces after training on averted (half-profile) distractors (left graph: �45�, right
graph: +45�).

Table 3
p-Values for exhaustive HSD Tukey comparisons between each pair of Euclidean distances as a function of the targets and of the distractors orientations.

Training category Test categories

Anger Happy Neutral Anger Happy Neutral

Averted �45� distractors/averted �45� targets Averted +45� distractors/averted +45� targets
Anger 0.00010** 0.00011** 0.00010** 0.00011**

Happy 0.00010** 0.00010** 0.00010** 0.00010**

Neutral 0.00011** 0.00010** 0.00011** 0.00010**

Directed distractors/averted �45� targets Directed distractors/averted +45� targets
Anger 0.551574 0.000105** 0.000162** 0.000105**

Happy 0.551574 0.000105** 0.000162** 0.000105**

Neutral 0.000105** 0.000105** 0.000105** 0.000105**

Averted �45� distractors/directed targets Averted +45� distractors/directed targets
Anger 0.006306** 0.000105** 0.000105** 0.000105**

Happy 0.006306** 0.000105** 0.000105** 0.000105**

Neutral 0.000105** 0.000105** 0.000105** 0.000105**

Training category main effect : F(2, 98)=212.85,p=0.0000
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Training category main effect : F(2, 98)=251.95,p=0.0000
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Fig. 5. Average Euclidean distances produced by averted (half-profile) target faces (left graph: �45�, right graph: +45�) after training on directed (full-
frontal) distractors.
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tion was the only condition where the authors observed an
effect of happy faces at the level of accuracy but not at the
level of reaction time (Fig. 7). Moreover, this experimental
condition has no theoretical importance in the original pa-
per (Juth et al., 2005) because they did not assume averted
target faces to produce an effect among neutral directed
distractors (Fig. 6).
Please cite this article in press as: Mermillod, M., et al. Neural
Cognition (2009), doi:10.1016/j.cognition.2008.11.009
6.4. Averted (half-profile) distractor faces/directed (full-
frontal) target face

Contrary to the previous simulation, target faces were
presented directed to the observer whereas distractor faces
were averted to �45� or +45�. For �45� averted distractors,
happy faces produced an average Euclidean distance of
computation as a tool to differentiate perceptual from ...



Training category main effect  : F(2, 98)=1386.2,p=0.0000

Anger Happy Neutral

Training category

0.8

0.9

1.0

1.1

1.2

1.3

1.4

1.5

E
uc

lid
ea

n 
di

st
an

ce

Training category main effect : F(2, 98)=684.02,p=0.0000
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Fig. 6. Average Euclidean distances produced by directed (full-frontal) target faces after training on averted (half-profile) distractors (left graph: �45�, right
graph: +45�).
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Fig. 7. Behavioral data reported by Juth et al. (2005).
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Fig. 8. Synthesis of connectionist results for each behavioral condition.
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1.42 (SE = 0.011) that was significantly higher (Table 3)
than the Euclidean distance of 1.38 (SE = 0.012) for angry
faces and 0.91 (SE = 0.009) for neutral faces. Similarly, for
+45� averted distractors, happy faces produced an average
Euclidean distance of 1.49 (SE = 0.02). This value was high-
er than the Euclidean distance for angry faces: 1.39
(SE = 0.017) but also compared to the Euclidean distance
for neutral faces: 0.99 (SE = 0.012). Both differences were
significant. The bias toward happy faces was therefore par-
ticularly important for these experimental conditions be-
cause the anger superiority effect was assumed to be
very acute in the behavioral studies for directed faces in
a crowd of averted faces. Note that, as in the original Juth
et al. (2005) study, the neural network had an overall bet-
ter generalization rate (i.e., lower Euclidean distance)
when directions of target and distractors where congruent
(directed distractors/directed target or averted distractors/
averted target) compared with incongruent directions (di-
Please cite this article in press as: Mermillod, M., et al. Neural
Cognition (2009), doi:10.1016/j.cognition.2008.11.009
rected distractors/averted target or averted distractors/di-
rected target).

6.5. Synthesis and comparisons with behavioral results

The aim of this part is a synthesis of the above men-
tioned connectionist data and a comparison to the behav-
ioral data (Fig. 7) obtained by Juth et al. (2005). Results
in Fig. 8 show a significant perceptual bias (p < 0.001 with
a post-hoc Tukey) for happy faces compared to angry faces
in each experimental condition, except for directed distrac-
tors/averted target. The two most important conditions at
a behavioral level to obtain the anger superiority effect in
the ‘‘face in the crowd” paradigm were for directed target,
among directed or averted distractors. Under these specific
conditions we observed a clear perceptual bias toward
happy faces. Connectionist simulations revealed no signif-
icant perceptual bias for anger or happy faces in directed
distractors/averted target but the bias is significant for
computation as a tool to differentiate perceptual from ...
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averted distractors/averted target, even if the authors do
not assume anger superiority effect for averted targets.

7. General discussion

In this work, we examined the perceptual factors at play
in the efficiency of detecting a face, angry as opposed to
happy, in a crowd of neutral faces. Employing the stimuli
used by Juth et al. (2005), but used also in the major extant
papers on this topic, our first simulation showed that hap-
py faces were more easily categorized by the network than
were angry and neutral faces. This was found for directed
and +45� averted faces when all categories were learned
together, whereas the difference was not significant for
�45� averted faces. In our second simulation, which corre-
sponds to a more precise replication of the Juth et al.
(2005) experimental design, we observed a perceptual bias
for happy faces in the two most important conditions
(when target faces were directed toward the observer).
This could easily explain the unexpected better and faster
detection of happy faces in the Juth and colleagues’ studies.
Note that the artificial neural network was able to general-
ize training from averted faces to directed faces for the dif-
ferent emotional categories which was an important result
per se. This result is consistent with previous behavioral
and computational data (Valentin & Abdi, 1996) showing
that even a single layer neural network performing face
recognition is able to generalize training from full-frontal
to half-profile viewpoint as well as human observers. How-
ever, these results were based on orientation and identity
but did not combine orientation and EFE. Further behav-
ioral and computational data must be collected in order
to explore the generalization capabilities of EFE across dif-
ferent viewpoint in human and artificial systems.

Our results clearly show that, even if the facial expres-
sions used by Juth et al. (2005) were carefully controlled
for color, lighting conditions or other contextual differences
such as background or clothing, there exists a perceptual
bias intrinsic to the expressions of happy, angry and neutral
faces. This bias could constitute a parsimonious explanation
of their finding of a happy superiority effect since partici-
pants could discriminate happy face more easily than angry
face. The critical issue of whether the face-in-the-crowd ef-
fect should be more appropriately labeled perceptual or
emotional, raised by the pioneering study nearly 20 years
ago, is therefore still a topical question for behavioral stud-
ies (Hansen & Hansen, 1988, p. 923).

More generally, happy EFE seem to be easier to recog-
nize than other EFE for human observers (Russell, 1994
for a review across different cultures). The problem with
human participants was that it was very difficult to deter-
mine if this better recognition rate is produced by percep-
tual factors (relevant features related to happiness are
more differentiated than perceptual features related to
other EFE) or by more complex cognitive or emotional fac-
tors. For example, happiness is the only clear positive va-
lence emotion across the six basic EFE. Thus, one might
assume that it will be easier to recognize happy expres-
sions if the valence has a major impact on determining
the recognition of specific EFE. Another possible explana-
tion for fast recognition of happy EFE could be that it could
Please cite this article in press as: Mermillod, M., et al. Neural
Cognition (2009), doi:10.1016/j.cognition.2008.11.009
be very useful for humans to recognize happy expressions
very rapidly, for social purpose for example. Thus our cog-
nitive or emotional system may allocate specific resources
to this task and fast detection might not be related to per-
ceptual features but to cognitive or emotional resources.
Compared to human observers, the use of neural networks
(as well as statistical analysis of the stimuli) allows inves-
tigating the perceptual structure of stimuli without any
references to hypothetic innate emotional processes driven
by the phylogenetic development.

Contrasting with the conflicting results observed with
real faces, schematic faces gave rise to a reliable anger
superiority effect (Juth et al., 2005; Öhman et al., 2001). Be-
cause schematic faces are created by using identical phys-
ical features, there exist the same physical differences from
neutral to angry faces and from neutral to happy faces. The
problem with schematic faces is that there is no perceptual
variability in the data. The three categories are represented
by three single points in the perceptual space, which is
completely unrealistic compared to real human faces.
Thus, along with a superior perceptual control, schematic
faces could always be seen as lacking ecological validity.

The generalizability of the anger superiority effect in
real faces could be clearly anticipated by using perceptu-
ally controlled faces. From this perspective, neural net-
works could be used as a computational tool in order to
select, on a perceptual basis, stimuli from different catego-
ries (e.g., emotion) but also for different stimuli (e.g., faces
or scenes). This should be done in diverse paradigms such
as visual search paradigms like the face-in-the-crowd.
Selecting happy, angry or neutral facial expressions that
are perceptually well-differentiated (see Fig. 2) is expected
as a way to avoid those perceptual biases. In other words,
among the different faces used in the experiment, we are
able to determine by means of neural computation which
of them do not overlap with other category members.
Therefore, perceptual biases could be controlled on the ba-
sis of the Euclidean distances separating each category. We
could, therefore, select real expressions from different
emotional categories (i.e., anger, joy) that are physically
(i.e., perceptually) equally distant from the neutral faces
in order to test emotional processes while controlling per-
ceptual factors.

To conclude, the present simulations provide computa-
tional evidence in support of the suggestion by Juth et al.
(2005) that the happy superiority effect is perceptually dri-
ven. Neural network modeling was used as a computa-
tional tool allowing us to test the basic statistical
properties of the stimuli (in determining which category
is perceptually more distant from one or the other cate-
gory). Results provided evidence for better and easier rec-
ognition of happy faces, compared to angry faces, among a
crowd of neutral distractors (particularly when target faces
are directed toward the observer). This raises major con-
cerns about the possibility of better recognition of angry
among neutral faces, for real-life stimuli, evolved over phy-
logenetic development. The recent behavioral results seem
to be best explained by pure perceptual factors without
any reference to phylogenetic development. However, the
phylogenetic hypothesis remains possible since the per-
ceptual bias acts against the phylogenetic hypothesis of
computation as a tool to differentiate perceptual from ...
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better recognition of angry faces in a crowd. Nonetheless,
further researchers will have to further tease apart percep-
tual from emotional factors in order to carefully address
this question. This will in return largely improve the eco-
logical validity of the empirical findings. We promote the
use of statistical or connectionist modeling to improve
the selection of faces among other stimuli, for instance
by selecting angry and happy faces at equal Euclidean dis-
tances from neutral stimuli. This procedure can improve
the identification of emotional versus perceptual factors
in the processing of facial expression of emotion.
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Appendix A. First, we applied a Hann window, avoid-
ing boundary effect in subsequent Fourier transformation.
Boundary effects could result in a bias toward an over-
representation of cardinal orientations, and the Hann
window is a common tool to suppress this bias. The fol-
lowing formula describes the Hann window applied to
each image

WðiÞ ¼ 0:5þ 0:5� cos
2pi
N

� �

Then, we applied Gabor receptive fields in the spectral
domain by multiplying the spatial frequency information
by the kernel of the Gabor function

Gðx; y; fc; hÞ ¼
1

2prrrt
e
�ðx�uÞ

2

2r2
r e
�ðx�u?Þ

2

2r2
r ej2pxfc

With

x ¼ ½x; y�t ; fc ¼ ½f0 cos h;�f0 sin h�t

u ¼ ½cos h; sin h�t; u? ¼ ½sin h; cos h�t

�����
Parameters rr and rt of the Gaussian determine the spa-

tial extent of the filter. The vector fc with module f0 and
direction h describes the location of this filter in the Fourier
domain.

The second component was a back-propagation neural
network whose aim was to classify the output vectors pro-
vided by the Gabor filters. The connectionist network was a
3-layer back-propagation neural network. We used the
standard hetero-association training algorithm.

During the feed-forward phase, activation was rescaled
by means of a sigmoid transfer function:

f ðaÞ ¼ 1
1þ e�a

where f(a) is the output activation value and a is the sum of
the input activation vector multiplied by the input-to-hid-
den weight matrix.
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The input vector activation was then propagated
through the network, layer-by-layer, until it reaches the
output layer. Then, the supervised learning algorithm com-
puted the sum of squared error (SSE)

E ¼ 1
2

X
p

X
k

ðtpk � OpkÞ2

In this equation, p indexes the pattern in the training
set, k indexes the output nodes, tpk the desired output for
the kth output node for the pth pattern, opk the observed
output for the kth output node for the pth pattern.

Then, the error signal was computed, using the standard
back-propagation algorithm (Rumelhart et al., 1986) and
back-propagated through the network until the SSE func-
tion is minimized and the network ‘‘learns” the input
patterns.
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